
A Neighborhood Search and Set Cover Hybrid
Heuristic for the Two-Echelon Vehicle Routing
Problem

Youcef Amarouche1

Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253
CS 60 319, 60 203 Compiègne cedex, France
youcef.amarouche@hds.utc.fr

Rym N. Guibadj
LISIC, Laboratoire d’Informatique Signal et Image de la Côte d’Opale, ULCO, Université Lille
Nord-de-France, France
rym.guibadj@univ-littoral.fr

Aziz Moukrim
Sorbonne universités, Université de technologie de Compiègne, CNRS, Heudiasyc UMR 7253
CS 60 319, 60 203 Compiègne cedex, France
aziz.moukrim@hds.utc.fr

Abstract
The Two-Echelon Vehicle Routing Problem (2E-VRP) is a variant of the classical vehicle routing
problem arising in the context of city logistics. In the 2E-VRP, freight from a main depot is de-
livered to final customers using intermediate facilities, called satellites. In this paper, we propose
a new hybrid heuristic method for solving the 2E-VRP that relies on two components. The first
component effectively explores the search space in order to discover a set of interesting routes.
The second recombines the discovered routes into high-quality solutions. Experimentations on
benchmark instances show the performance of our approach: our algorithm achieves high-quality
solutions in short computational times and improves the current best known solutions for several
large scale instances.
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11:2 A Neighborhood Search and Set Cover Hybrid Heuristic for the 2E-VRP

1 Introduction

Freight transportation is a key factor underpinning economic growth. However, it is also a
major nuisance, especially in urban areas where congestion and environmental effects disturb
people’s well-being. As demand for freight transportation increases, new transport policies
and better traffic management become essential to limit its effects. The concept of city
logistics is one approach to solving the problem. It aims to optimize freight transportation
within city areas while considering traffic congestion and environmental issues as well as
costs and benefits to the freight shippers [18]. Some of the most used models in city logistics
are multi-echelon distribution systems, especially two-echelon systems.

In a two-echelon distribution system, delivery from one or more depots to the customers is
managed by shipping and consolidating freight through intermediate depots called satellites.
Freight is first moved from the depots to the satellites using large trucks. Then, freight is
delivered from the satellites to the customers using smaller vehicles. Proceeding like this
allows to shape more conveniently the fleet of vehicles to be used, as larger trucks are more
cost efficient whereas smaller ones are preferable in city centers. Because the flow of freight
in each echelon depends on that in the other echelon, routing problems arising in two-echelon
distribution systems must be studied as a whole; they cannot be merely decomposed into
two separate sub-problems. The problem that studies how to efficiently route freight in such
systems is known as the Two-Echelon Vehicle Routing Problem (2E-VRP).

In this paper, we consider the basic version of the 2E-VRP. It is characterized by a single
depot and a set of satellites. A fleet of homogeneous vehicles of known size is available at
each echelon. Vehicle capacities are limited. Only one type of product is to be shipped and
split deliveries are only allowed at the first level. The objective is to minimize the total
routing cost in both levels.

To address this problem, we propose a hybrid heuristic that relies on two components
embedded in an iterative framework. The first component aims to generate a set of promising
routes using destroy and repair operators combined with an efficient local search procedure.
The second component recombines the generated routes by solving a set covering problem to
obtain a high quality solution. Computational experiments conducted on the test instances of
the literature show the performances of our approach, as it reached high quality solutions in
short computing times, and was able to improve the current best known solution for several
large instances.

The remainder of this paper is organized as follows. In Section 2, an overview of the
related literature is given. The problem is described in Section 3, and the proposed approach
is explained in Section 4. Section 5 presents computational results and compares them to the
best known solutions of the literature. Finally, Section 6 concludes and discusses possible
directions for future research.

2 Related work

The first definition of the Two-Echelon Vehicle Routing Problem (2E-VRP) was introduced
by Perboli et al. [11, 12] who proposed a flow-based formulation, and solved the problem using
a Branch-&-Cut algorithm (B&C). Since then, several exact methods have been developed to
solve the 2E-VRP. Jepsen et al. [9] presented a different model for the 2E-VRP and solved
it using a B&C that relies on a MILP relaxation of the problem, a feasibility test, and a
specialized branching scheme to branch on infeasible solutions. Santos et al. [15] developed
two Branch-&-Price (B&P) algorithms to solve the 2E-VRP. The first considers routes that
satisfy elementary constraints while the second relaxes such conditions when pricing. Later,
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Santos et al. [16] implemented a Branch-&-Cut-&-Price algorithm by incorporating valid
inequalities into their B&P. Currently, the best exact method for the 2E-VRP was introduced
in [1] and solves the problem by decomposing it into a set of Multi-Depot VRP with side
constraints. It relies on a new integer linear programming (ILP) formulation, a bounding
procedure based on dynamic programming, and a dual ascent method.

Various heuristics were also proposed to solve the 2E-VRP. Crainic et al. [3, 4] addressed
the 2E-VRP by separating the first and the second echelon into two sub-problems, and
then solving them sequentially. Components of these heuristics were later used in a hybrid
GRASP with path re-linking in [5]. Hemmelmayr et al. [8] implemented an Adaptive Large
Neighborhood Search (ALNS) that uses various repair and destroy operators specifically
designed to solve the 2E-VRP. They also introduced new large instances on which they
tested their algorithm. Zeng et al. [20] presented a hybrid two phase heuristic composed
of a GRASP and Variable Neighborhood Descent (VND). Breunig et al. [2] developed a
Large Neighborhood Search (LNS) for the 2E-VRP that was able to improve the best known
solutions for several instances of the literature. More recently, Wang et al. [19] implemented
a hybrid algorithm for the 2E-VRP with Environmental Considerations (2E-CVRP-E). Their
algorithm comprises of a Variable Neighborhood Search (VNS) followed by a post optimization
step based on the resolution of a linear program. Their algorithm further improves some
best known solutions for 2E-VRP instances.

Related work may include other variants of the 2E-VRP (see [7, 17, 21]), and similar
problems like the Two-Echelon Location Routing Problem (2E-LRP) and the Truck and
Trailer Routing Problem (TTRP). For a more detailed survey on the subject, we invite the
reader to refer to Cuda et al. [6].

3 Problem definition

The 2E-VRP is defined on a weighted undirected graph G = (V,A), where V is the set of
nodes and A the set of arcs. Set V is partitioned as V = {v0}∪Vsat∪Vcust. Node v0 represents
the depot, subset Vsat contains nsat satellites and subset Vcust contains ncust customers. Set
A = A1 ∪A2 is divided into two subsets. A1 = {(i, j) : i, j ∈ {v0} ∪ Vsat, i 6= j} contains the
arcs that can be taken by first level vehicles: trips between the depot and the satellites and
trips between pairs of satellites. A2 = {(i, j) : i, j ∈ Vsat ∪ Vcust, (i, j) /∈ Vsat × Vsat, i 6= j}
contains the arcs that can be taken by second level vehicles: trips between customers and
satellites and trips between pairs of customers. A travel cost cij , (i, j) ∈ A, is associated
with each arc. We assume that the matrix (cij) satisfies the triangle inequality.

Each customer i ∈ Vcust demands di units of freight to be delivered. The demand of a
customer cannot be split among several vehicles, that is, a customer must be served exactly
once. Moreover, customer demands cannot be delivered by direct shipping from the depot
and must be consolidated at a satellite. Satellite demands are not explicitly given but
considered to be the sum of all the customer demands that are served trough the satellite.
We assume that it can exceed vehicle capacity and thus, we allow for it to be split among
different vehicles e.i. a satellite can be served by more than one vehicle. A satellite may also
have a demand equal to zero and, in this case, not be visited by any vehicle. Consolidating
shipments at satellite s ∈ Vsat incurs handling costs equal to hs times the quantity of handled
goods.

A fleet f1 of m1 identical vehicles of capacity Q1 is located at the depot v0 and is used to
deliver goods to the satellites. Additionally, a fleet f2 of m2 identical vehicles of capacity Q2
is available for serving the customers. Each of the m2 vehicles can be located at any satellite
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11:4 A Neighborhood Search and Set Cover Hybrid Heuristic for the 2E-VRP

s ∈ Vsat as long as the number of vehicles at one satellite does not exceed a limit ks.
We define a first-level route as a route performed by a first-level vehicle that starts at the

depot, visits one or several satellites then returns to the depot. In a same way, we define a
second-level route as a route run by a second-level vehicle that starts at satellite s ∈ Vsat,
visits a subset of customers before returning to s. Routes must respect vehicle capacities,
that is, the sum of deliveries made by a first-level route to the satellites it visits must not
exceed Q1 and the total demand of the customers visited by a second-level route must not
exceed Q2. Each vehicle performs only one tour, and each route has a cost equal to the sum
of the costs of the arcs used.

The objective of the 2E-VRP is to find a set of routes at both levels such that each
costumer is visited exactly once, the capacity constraints are respected, the quantity delivered
to costumers from each satellite is equal to the quantity received from the depot, and the
total routing and handling costs are minimized. Figure 1 shows a solution example for the
2E-VRP.

Depot

Satellite

Customer

1st echelon route

2nd echelon route

Figure 1 Example of a 2E-VRP solution.

4 Solution method

We propose a hybrid heuristic that relies on a neighborhood search to generate good feasible
solutions, and a integer programming (IP) method to recombine the routes from those
solutions into a better one. Algorithm 1 summarizes the steps of our method.

At each iteration of the algorithm, the route generation heuristic takes an initial solution
S and tries to improve it while exploring the solution space and storing new routes in the
pool. After that, the recombination component uses the discovered routes to construct a
better solution by solving a Set Cover based formulation of the 2E-VRP. If the recombination
fails to produce a better solution, the algorithm constructs a different one from scratch and
uses it as initial solution for the route generation heuristic during the next iteration. The
idea of the approach is to use the integer program as a mean to find better quality solutions
missed by the route generation heuristic while guiding the search process towards different
regions of the solution space.

Exact models are usually used as post-optimization techniques after the heuristic resolution
process as was done in [14, 19]. This is due to the exponential worst case performance of
the model. What is new in our proposal is that we iteratively apply a Set Cover (SC) based
formulation of the problem as a refinement technique rather than focusing on the local search
results. We show that is possible to combine efficiently heuristic and exact algorithms to
explore the search space within short runtimes.
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1 S_best := BestInsertionHeuristic ();
2 S := S_best ;
3 pool := {};
4 While (! Stopping criteria ) Do
5 Begin
6 S := RouteGenerationHeuristic (S,pool );
7 If (cost(S) < cost( S_best )) Then
8 S_best := S;
9

10 S := RouteRecombination (pool );
11 If (cost(S) < cost( S_best )) Then
12 S_best := S;
13 Else
14 S := GreedyInsertionHeuristic (); /* Restart */
15 End;
16 Return S_best ;

Algorithm 1 Neighborhood Search and Set Cover hybrid heuristic for the 2E-VRP.

4.1 Route generation heuristic
The neighborhood search we use to explore the solution space is based on the destroy-and-
repair principle. At each iteration, a part of the solution is destroyed by removing a limited
number of customers using a destroy operator. The removed customers are then re-inserted
into the solution with a repair operator. The structure of this heuristic is described in
Algorithm 2.

Starting from an initial solution, a random number η ∈ [1, τ ] of customers is removed from
the second echelon. The maximum number of customers to be removed τ is first initialized
to τmin and then increased after each non-improving iteration until it reaches τmax. As
soon as an improvement is found, τ is reset to τmin. Slowly varying the value of τ during
the execution allows to intensify the search around promising solutions and then to slowly
increase diversification as the search converges toward a local optima. Once the solution is
destroyed, the removed customers are reinserted using a repair operator and the obtained
solution is passed to a local search to improve the second echelon routes. After that, the
satellite demands are computed and the first echelon routes are constructed to obtain a
complete solution. If the new solution has a better objective value than S, it is accepted
as the new incumbent. Moreover, after imax consecutive iterations without improving the
incumbent solution, the best-known solution is updated and the configuration of the available
satellites is modified using perturb(S) to allow the search procedure to explore a different
region of the solution space. The solution obtained after the perturbation becomes the new
incumbent. The algorithm ends after iterrepeat consecutive iterations have been performed
without improving the best-found solution.

4.1.1 Destruction
The destroy procedure only considers the second level routes. At each iteration, it randomly
chooses one of the following operators and removes a random number of customers η in [1, τ ].

a. Random removal operator: removes η randomly chosen customers from the solution.
b. Worst removal operator: removes the customers with the highest increase in solution

cost. More precisely, it calculates for each customer k located between i and j a saving
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1 S := S_0; /* Initial solution */
2 S_best := S;
3 tau := tau_min ; iter := 0;
4 Repeat
5 i := 1;
6 While (i < i_max) Do
7 Begin
8 S_tmp := destroy (S,tau );
9 S_tmp := localSearch ( repair (S_tmp ));

10 S_tmp := firstLevelReconstruction (S_tmp );
11 pool := update (pool ,S_tmp ); /* Add routes to pool */
12 If(cost(S_tmp) < cost(S)) Then
13 Begin
14 S:= S_tmp;
15 i := 1;
16 tau := tau_min ;
17 End;
18 Else
19 Begin
20 i := i + 1;
21 increment (tau );
22 End;
23 End;
24 If(cost(S) < cost( S_best )) Then
25 Begin
26 S_best := S;
27 iter := 0;
28 End;
29 Else iter := iter + 1;
30
31 S := perturb (S);
32
33 Until (iter >= iter_repeat );
34 Return S_best ;

Algorithm 2 Route generation heuristic

value cik + ckj − cij . Savings are then normalized by the average cost of the incident arcs
of the corresponding customer and altered by a random factor between 0.8 and 1.2 as
in [8]. Finally, customers are sorted in decreasing order of their normalized savings and
the η first customers are removed from the solution. Normalizing the savings serves to
avoid repeatedly removing the customers that are isolated from the others.

c. Sequence removal operator: removes a sequence of η consecutive customers from a
randomly chosen route. If η is larger than the chosen route, the whole route is destroyed
and the remaining number of customers is removed from a second route.

4.1.2 Repair and first level reconstruction
Repair is performed by using two heuristics : Best Insertion Heuristic (BIH) and Greedy
Insertion Heuristic (GIH). When repairing an incomplete solution, we first use BIH. This
constructive heuristic identifies among all the unrouted customers the one that increases the
least the total solution cost and inserts it at its best position. It repeats the process until



Y. Amarouche, R.N. Guibadj, and A. Moukrim 11:7

all customers are routed. If one or more customers remain unrouted because their demands
are higher than the largest remaining capacity of any vehicle, the repair process is restarted
using GIH. The Greedy Insertion Heuristic inserts customers in a random order one after
the other at their cheapest possible position in the solution. If the GIH fails, the customers
are randomly reordered and the heuristic restarts. We observed that proceeding this way is
sufficient to achieve feasible solutions after a small number of tries. These repair heuristics
consider feasible insertions in already existing routes. If the maximum number of vehicles is
not yet reached, the creation of new empty routes from open satellites is also tested.

The construction of the first-echelon routes is achieved by means of a heuristic similar
to GIH. The heuristic starts by creating for each satellite with a demand greater than Q1
enough back-and-forth trips so that its remaining demand becomes smaller than Q1. Once it
is done, the heuristic proceeds to insert of the remaining demands the same way as GIH.

4.1.3 Local search
The local search procedure consists of the following operators : 2−opt, 2−opt∗, Relocate(λ),
and Swap(λ1, λ2) with λ, λ1, λ2 ∈ {1, 2}. The 2 − opt operator [10] removes arcs (i, i + 1)
and (j, j + 1) from the same route and reconnects arcs (i, j) and (i+ 1, j + 1). The 2− opt∗
operator [13] is performed on each pair of routes u and v originating from the same satellite.
It replaces arcs (i, i + 1) from u and (j, j + 1) from v by arcs (i, j + 1) and (j, i + 1) or
by arcs (i, j) and (i + 1, j + 1). Relocate moves sequences of λ customers to their best
positions in the solution. Finally, Swap exchanges the positions of two sequences of λ1 and
λ2 customers from the same route or from two different routes. At each iteration, the local
search procedure randomly applies one of the above operators. If the chosen operator does
not improve the solution, it is discarded, otherwise the set of operators is reset. The process
continues until all operators have been discarded. Moves from each operator are performed
in a first-improvement manner until no improving move can be found in the neighborhood.

4.1.4 Perturbation
In order to explore different regions of the search space, we temporarily close satellites and
reopen them using the Close Satellites and Open Satellites operators.

a. Close Satellites: randomly chooses one satellite among the open ones having at least
one route originating from them and closes it. The routes of the chosen satellite are
reassigned to an open satellite that keeps their cost to a minimum. When the number
of open satellites becomes less than the minimum required to serve all customers, the
operator chooses a random satellite among the closed ones and opens it.

b. Open Satellites: chooses a random number of satellites among those that are closed
and opens them. In order to allow the number of open satellites to decrease, especially at
the beginning when most of them are open, the number of satellites to be opened can be
nil.

4.2 Recombination method
The route recombination component uses a pool of routes collected during the search process
and recombines them to obtain a high-quality solution by solving a set cover based formulation
of the problem. In the following, we introduce the notations used in the IP model.

LetM be the set of all the possible first level routes, andMs ⊆M the subset of first-level
routes that serve satellite s ∈ Vsat. We note gr the cost of route r ∈M. Let R be the set of
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11:8 A Neighborhood Search and Set Cover Hybrid Heuristic for the 2E-VRP

all the possible second-level routes, and Rs the subset or routes passing through s ∈ Vsat, thus
R =

⋃
s∈Vsat

Rs. We associate to each route r ∈ R a cost cr, and a load wr =
∑

c∈r dc equal
to the total demand of customers visited in route r. The binary parameter δri is equal to 1
if and only if route r ∈ R visits customer i ∈ Vcust, and 0 otherwise. The second-level routes
having been extracted from valid solutions, they all satisfy the vehicle capacity constraints.

Let yr ∈ {0, 1} be a binary decision variable equal to 1 if and only if first-level route
r ∈ M is in the solution, xr ∈ {0, 1} a binary decision variable equal to 1 if and only if
second-level route r ∈ R is in the solution, and qsr a non-negative variable representing the
amount of goods delivered by route r ∈ M to satellite s ∈ Vsat. We assume that qsr = 0
if satellite s is not visited in route r. Parameter hs represents handling costs at satellite
s ∈ Vsat. The route recombination model can be formulated as follows:

min z =
∑
r∈R

cr · xr +
∑

r∈M
gr · yr +

∑
s∈Vsat

∑
r∈Ms

hs · qsr (1)

s.t.
∑
r∈R

δri · xr ≥ 1 , ∀i ∈ Vcust (2)∑
r∈Rs

xr ≤ ks , ∀s ∈ Vsat (3)

∑
r∈R

xr ≤ m2 (4)∑
r∈M

yr ≤ m1 (5)∑
r∈Ms

qsr =
∑

r∈Rs

wr · xr , ∀s ∈ Vsat (6)

∑
s∈Vsat

qsr ≤ Q1 · yr , ∀r ∈M (7)

xr ∈ {0, 1}, r ∈ R (8)
yr ∈ {0, 1}, r ∈M (9)
qsr ∈ R+, s ∈ Vsat, r ∈M (10)

The objective function (1) states to minimize routing costs on both levels plus handling
costs at each satellite. Constraints (2) ensure that each customer is visited at least once.
Constraints (3) limit the number of second-level vehicles per satellite. Constraints (4) and
(5) impose upper bounds on the number of vehicles used to implement first and second level
routes. Balance between the quantity delivered by first-level routes to a satellite and the
customer demands supplied from said satellite is imposed by constraints (6). Constraints (7)
ensure that the capacity of first-level vehicles in not exceeded. Because the total amount of
goods that need to be supplied to each satellite is not known beforehand, we cannot assume
that capacity constraints are respected by first-level routes like we did for second-level routes.
We need to explicitly state them in the formulation. Finally, constraints (8), (9), and (10)
define the values domain for the decision variables.

Note that the model we use in our recombination component is a relaxation of the 2E-VRP.
Constraints (2) require that each customer is visited at least once, instead of exactly once.
However, since the distance matrix satisfies the triangle inequality, the two formulations
remain equivalent as the resolution process will naturally lean towards solutions with the
least possible amount of visits to a same customer. If the pool contains all the possible
routes, solving the formulation with the relaxed model will still result in an optimal solution
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where each customer is visited exactly once. The idea of relaxing the problem stems from the
fact that the recombination pool only contains a limited subset of routes, thus the solutions
it finds may be few. To increase the number of combinations that can be made, we choose
to allow combining routes that share common customers, as it can lead to better objective
values. Even though the resulting combination may not be a valid solution to the 2E-VRP,
removing the extra visits to each customer makes it feasible while producing new routes and
further lowering the objective value.

4.2.1 Pool management and initialization

The performance of the route recombination component strongly depends on the size of
the pool of routes. A larger size increases the chances of finding high-quality solutions but
also induces higher computation times, whereas a small size reduces computation times but
makes finding improved solutions less likely. Thus, pool size must be fixed in order to offer a
good trade-off between solution quality and computation efforts. Furthermore, to account
for the lesser number of available routes, it is better to keep inside the pool only routes that
are more likely to be in high-quality solutions. To this end, we assign each route a priority
based on the cost of the solution it was extracted from, thus favoring routes that belong to
the best found solutions. When the pool capacity is reached, routes with lower priority are
removed and replaced by the new ones. If a route already exists inside the pool, its priority
is updated if it is extracted from a better solution.

The pool is initialized with the routes of x different solutions generated by the Greedy
Insertion Heuristic described in Section 4.1.2 and improved with the local search procedure
described in Section 4.1.3. Furthermore, for each satellite s we add m1 copies of round trip
routes to s from the depot to account for the possibility of it being served more than once.

4.2.2 Correcting heuristic

When the route recombination model is solved, some customers might be visited more than
once. In this case, we use a correcting heuristic to remove the extra visits and produce a
valid solution. The algorithm starts by establishing the set Vcm of customers that are visited
more than once. It then computes for each visit v of each customer i ∈ Vcm its removal
gain δiv, removes the visit with the highest gain and updates the gains for the remaining
ones. When the number of visits to a customer drops to one, it is removed from Vcm. The
procedure is repeated until Vcm becomes empty. During our tests, we observed that only a
few customers tend to be visited multiple times. Thus, this simple heuristic proves to be
enough to provide good results with limited computational effort.

5 Computational results

Our algorithm was coded in C++ using the Standard Template Library (STL) for data
structures, and IBM ILOG CPLEX 12.6.3 to solve the IP. The algorithm is compiled with
the GNU GCC compiler in a Linux environment and tested on an Intel Xeon E5-2670v2
CPU at 2.50GHz with similar performance to the ones used in the literature.

We conducted extensive computational experiments on the benchmark instances for the
2E-VRP. There are currently six instance sets available. The size of the instances ranges from
12 customers and 2 satellites, to 200 customers and 10 satellites. The main characteristics of
the benchmark instances are listed in Table 5 of Appendix A. Note that the small instances
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11:10 A Neighborhood Search and Set Cover Hybrid Heuristic for the 2E-VRP

of Set 1 are no longer used for testing, thus they are not included. For our tests we used the
files provided by Breunig et al. [2].

5.1 Parameter tuning
The proposed approach has six parameters: (1) imax, iterrepeat, τmin and τmax in the route
generation heuristic; (2) the size of the pool (Spool) in the route recombination component; and
(3) the stopping criterion of the iterative framework. We carried out a series of preliminary
experiments to set the parameter values: we tested our algorithm on a subset of instances
while varying parameter values, and kept those that offered the best trade-off between
solution quality and runtime. The stopping criteria is set according to previous literature.
Breunig et al. [2] set the maximum runtime of their algorithm to 60s for small instances and
900s for larger ones. Wang et al. [19] use the maximum runtime and the maximum number
of iterations Nalgo without improving the best found solution as stopping rules. They set
them so that the maximum runtime of their algorithm does not exceed 1500s. To show the
performance of our method we restrict our runtime to 60s and 900s as do Breunig et al. [2].
The remaining parameter settings are given in Table 1.

Parameter Description Value
imax max. nb. of non-improving iterations before perturbing the

solution
0.2n

iterrepeat max. nb. of non-improving iterations for the route generation 10
τmin, τmax max. nb. of customers to be removed 0.15n, 0.45n
Spool size of the pool

∑
dc

m2 ∗ 15
Nalgo max. nb. of non-improving iterations in the global algorithm n

Table 1 Parameter settings.

5.2 Comparison with the literature
In order to investigate the effectiveness of the proposed algorithm, we compare its performance,
when applicable, with that of the ALNS by Hemmelmayr et al. [8], the LNS by Breunig et
al. [2] and the VNS by Wang et al. [19] as well as the current best-known solution for each
instance from the literature. All the results were obtained through five independent runs
of the algorithm and are summarized in Table 2. The results of our Neighborhood Search
and Set Cover Hybrid Heuristic are listed in column "NS-SC". The columns "ALNS", "LNS",
and "VNS" show the results of the methods proposed by Hemmelmayr et al. [8], Breunig et
al. [2], and Wang et al. [19], respectively. The average and the best objective value of the
five runs are given in columns "Avg. 5" and "Best 5", respectively. Column "CPU" shows the
average runtime of the algorithm in seconds. The column "BKS" refers to the best-known
solution of that set of instances. As was observed by Breunig et al. [2], there exist some
small differences in objective values that can be explained by a different rounding convention
or the small optimality gap of CPLEX. Table 3 summarizes the gaps obtained by each
algorithm on each benchmark. Columns "Avg. %" and "Best %" show the average and best
gap, respectively, expressed as a percentage. The overall gap is calculated by considering the
number of instances in each benchmark.

Instances in Sets 2 and 3, are relatively easy to solve and all algorithms are able to
find the best known solutions at least one time out of five. Instances in Set 4, while not
bigger than some instances of Sets 2 and 3, are more difficult to solve due to customer
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ALNS LNS VNS NS-SC
Avg. % Best % Avg. % Best % Avg. % Best % Avg. % Best %

Set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Set 3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Set 4a 0.01 0.00 0.07 0.02 0.04 0.00
Set 4b 0.30 0.26 0.01 0.00 0.05 0.02 0.03 0.00
Set 5 2.00 0.63 1.51 0.86 0.39 0.20 0.80 0.42
Set 6 A 0.16 0.04 0.06 0.02 0.07 0.02
Set 6 B 0.17 0.11 0.07 0.01 0.11 0.03
Overall 1.27 1.20 0.18 0.09 0.08 0.03 0.10 0.04

Table 3 Summary of average and best gaps on 2E-VRP benchmarks.

distribution [2]. Our "NS-SC" only misses four of the current best known solutions, and still
achieves high quality solutions with gaps less than 0.04%. Instances of Set 5 are the largest
of the literature and those where the gaps and the runtimes are more important. On these
instances, all the algorithms fail to achieve the best known solutions for several instances,
mainly due to the bigger numbers of customers ans satellites that constitute the instances.
The ALNS and the LNS can achieve an average relative gap of 2.00% and 1.51%, respectively.
The VNS achieves an average relative gap of 0.39%, but is slower than the other algorithms.
Our algorithm, on the other hand, offers good compromise between solutions quality and
runtime, as it achieves an average relative gap of 0.80% while being significantly faster than
both the LNS and the VNS. It was also able to improve the current best known solutions for
a total of seven instances from Set 5 during our experiments. Only Breunig et al. [2] and
Wang et al. [19] report results on the instances of Set 6. The LNS, the VNS, and our NS-SC
are all able to obtain very low average relative gaps on both Set 6a and Set 6b, but once
again our algorithm has a smaller runtime.

Overall, our algorithm is able to achieve the current best known solutions for 216 out
of 234 instances with an overall average relative gap of 0.10% and running times smaller
than those of the literature. During our experiments, NS-SC found seven new best known
solution values for the instances of Hemmelmayr et al. [8]. The values of these newly found
solutions are reported in Table 4. The Set designation and the names of the instances are
displayed in the first two columns. Column |Vcust| represents the number of customers in the
instance, |Vsat| is the number of satellites, and m1 and m2 indicate the number of available
first-level and second-level vehicles, respectively. Based on the above results, our approach is
very effective in solving the 2E-VRP.

Instance |Vcust| |Vsat| m1 m2 Former best known New best known
Set 5 100-5-1b 100 5 5 15 1108.62 1103.55

100-10-1b 100 10 5 18 916.25 911.8
100-10-3b 100 10 5 17 850.92 849.73
200-10-1 200 10 5 62 1539.29 1538.35
200-10-1b 200 10 5 30 1186.78 1175.81
200-10-3 200 10 5 63 1780.67 1779.68
200-10-3b 200 10 5 30 1197.9 1196.93

Table 4 New best known solution values found by NS-SC.
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6 Conclusions

In this paper, we presented a hybrid heuristic for the 2E-VRP. The algorithm uses an effective
neighborhood search to explore the solution space and discover high quality solutions. By
keeping trace of the exploration steps, the heuristic generates a set of routes which are then
recombined using an integer programming model. Solving this model serves as way to find
better solutions that were missed by the neighborhood search procedure and to faster lead
the algorithm towards promising regions of the solution space. Computational experiments
on the standard benchmark instances demonstrate the competitiveness of our approach. Our
algorithm consistently achieves high quality solutions with an overall average relative gap of
0.10%, while requiring less running time than other algorithms, and improves the current
best known solutions for seven instances for which no optimal solution is known.

In summary, the results presented in this paper are encouraging for the application of our
approach to optimize other two-echelon routing problems. Its components can be adapted
and additional ones can be integrated to account for different constraints. Future work will
primarily focus on the extension of the algorithm to variants of the 2E-VRP and similar
routing problems, mainly to accommodate more practical constraints and more realistic cost
structures.
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A Benchmark instances for the 2E-VRP

There are six sets of benchmark instances for the Two-Echelon Vehicle Routing Problem
(2E-VRP). The size of the instances ranges from 12 customers and 2 satellites, to 200
customers and 10 satellites. For our tests, we used the instances provided by [2]. Table 5
displays the main characteristics of the different sets. Column Nb. represents the number
of instances of the set, |Vcust| is the number of customers, |Vsat| is the number of satellites,
m1 and m2 the number of available first-level and second-level vehicles, respectively, and ks

represents the maximum number of second-level routes per satellite. Note that the small
instances of set 1 are no longer used for testing, thus they are not included in the table.
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Set Subset Nb. |Vcust| |Vsat| m1 m2 ks

Set 2 a 6 21 2 3 4 -
6 32 2 3 4 -

b 6 50 2 3 5 -
3 50 4 4 5 -

c 6 50 2 3 5 -
3 50 4 4 5 -

Set 3 a 6 21 2 3 4 -
6 32 2 3 4 -

b 6 50 2 3 5 -
c 6 50 2 3 5 -

Set 4 a 18 50 2 3 6 4
18 50 3 3 6 3
18 50 5 3 6 2

b 18 50 2 3 6 -
18 50 3 3 6 -
18 50 5 3 6 -

Set 5
-

6 100 5 5 [15, 32] -
6 100 10 5 [17, 35] -
6 200 10 5 [30, 63] -

Set 6 a 9 50 [4, 6] 2 50 -
9 75 [4, 6] 3 75 -
9 100 [4, 6] 4 100 -

b 9 50 [4, 6] 2 50 -
9 75 [4, 6] 3 75 -
9 100 [4, 6] 4 100 -

Table 5 Characteristics of the benchmark instances for the 2E-VRP.
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