
The Path&Cycle formulation for the Hotspot
Problem in Air Traffic Management
Carlo Mannino
SINTEF
[Forskningsveien 1, Oslo, Norway]
carlo.mannino@sintef.no

Giorgio Sartor
SINTEF
[Forskningsveien 1, Oslo, Norway]
giorgio.sartor@sintef.no

Abstract
The Hotspot Problem in Air Traffic Management consists of optimally rescheduling a set of
airplanes that are forecast to occupy an overcrowded region of the airspace, should they follow
their original schedule. We first provide a MILP model for the Hotspot Problem using a standard
big-M formulation. Then, we present a novel MILP model that gets rid of the big-M coefficients.
The new formulation contains only simple combinatorial constraints, corresponding to paths and
cycles in an associated disjunctive graph. We report computational results on a set of randomly
generated instances. In the experiments, the new formulation consistently outperforms the big-M
formulation, both in terms of running times and number of branching nodes.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Air Traffic Management, Hotspot Problem, Job-shop scheduling, Mixed
Integer Linear Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2018.14

Funding Project OPSTRA (Nr. 267554/080) founded by the Norwegian Research Council

1 Introduction

An important task in Air Traffic Management is the dynamic (re)scheduling of flights in order
to preemptively avoid that regions of the airspace would become overcrowded at some point
in time after the flights have departed (the frequency at which this scheduling happens is not
important in this paper). This is necessary to avoid overburdened air traffic controllers. In
fact, in order to guarantee the safety of air travel in large regions, the airspace is partitioned
into small volumes called control sectors. At any time, each such sector is managed by one
or more air traffic controllers. Due to safety reasons, each controller can only watch up to
a certain number of airplanes. The maximum number of airplanes controllable in a given
sector is called capacity (of the sector). If too many airplanes occupy a sector at a given
time, then there is an hotspot (see, e.g. [1, 2]). Hotspots can be avoided by delaying some
flights, holding airplanes on the ground. Our objective is to compute a hotspot-free schedule
for a set of airplanes in a large region of the airspace while minimizing the total delay.

For our purposes, it suffices to describe the route of each airplane as an ordered sequence
of sectors, starting at the departure airport and ending at the arrival airport. Even if
airplanes can adjust their cruising speed to a certain extent, in this paper we assume that
such speed is fixed, which implies that the time to traverse a given sector is also fixed. This

© Carlo Mannino and Giorgio Sartor;
licensed under Creative Commons License CC-BY

18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018).
Editors: Ralf Borndörfer and Sabine Storandt; Article No. 14; pp. 14:1–14:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carlo.mannino@sintef.no
mailto:giorgio.sartor@sintef.no
http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 The Path&Cycle formulation for the Hotspot Problem in Air Traffic Management

is in accordance with the standard subdivision of roles in air traffic management. In fact,
the speed of an airplane is monitored and possibly adjusted usually only by an air traffic
controller within his/her control sector. Instead, the schedule of a flight is assessed and
possibly recomputed many hours ahead its original departure time from a central authority
(e.g. in Europe, Eurocontrol). This procedure takes into consideration the official timetable
for all the flights traversing a region of the airspace and their associated routes. Already this
timetable can contain one or more hotspots. More typically, hotspots may emerge because of
some unpredicted event, such as a sudden delay in one or more aircraft ground operations,
bad weather conditions, or even the reduction of the capacity of one or more sectors.

When a hotspot is predicted, the authorities are required to implement some actions
to eliminate it. These actions generally consist of delaying the departure of some of the
airplanes. So, a natural problem arises: which airplanes should be held at the departure
airport, and for how long? Clearly we would like to minimize a measure of the overall delay
that is introduced with these actions. We call this the Hotspot Problem (HP).

A few recent papers address variants of the hotspot problem. In [6], the airspace is
subdivided into micro-cells of unit capacity, and airplanes can be delayed at the departure,
but only within the assigned time slot. A related problem, but on the side of the airlines
rather than of the controlling bodies, is addressed in [7]. Here, the authors assume that,
in order to mitigate congestion, the control authority issues a number of flight restrictions
(FCA) within feasible time slots for the flights of some airlines. The airline is then confronted
with the decision of how to modify flights trajectories in order to satisfy the FCAs. The
feasible trajectories are chosen in a predefined, finite set. Finally, in [5] an overarching,
time-indexed formulation is developed for a problem which includes, as subproblem, capacity
requirements in certain points in space.

All the above mentioned papers focus on modeling issues, using either constraint (CP) or
mixed integer (MIP) programming. The resulting formulations are then solved by invoking
a state-of-the-art CP or MIP solver. However, in our experience, this approach typically
does not suffice to tackle instances of practical size. Indeed, the standard formulations for
this kind of problems are the big-M and the time-indexed formulations. The former usually
provides weak bounds, and thus large search trees; the latter tends to grow to intractable
dimensions very quickly. In this paper we instead develop a new MILP formulation for the
Hotspot Problem that allows us to significantly improve over a standard big-M formulation.

2 A MILP big-M model for the Hotspot Problem

We start by introducing a standard big-M model for the Hotspot Problem. It extends the
model for job-shop scheduling problem with blocking and no-wait constraints introduced in
[4] and exploited in several papers for different transportation problems.

The Hotspot Problem is characterized by a set of sectors S (i.e., the airspace) and a set
of flights F . Each sector s ∈ S is associated with a maximum capacity cs. A route node is a
pair (f, s), where f ∈ F is a flight and s ∈ S is a sector. For each flight f ∈ F , we define its
flight route as an ordered sequence of route nodes:

(
(f, s1), (f, s2), . . . , (f, sq)

)
where s1, sq

are the sectors in which the departure and arrival airports are located, respectively, and
si−1, si are adjacent sectors, for i = 2, . . . , q. With some abuse of notation, we denote by
(f, s+1) the route node that immediately follows (f, s) in the flight route of f .

Let R be the set of all route nodes for all flights in F , D the set of all departure nodes,
and A the set of all arrival nodes. With each route node (f, s) ∈ R we associate the fixed
time Λ(f,s), that is the time flight f takes to traverse sector s. This time can be obtained

C. Mannino and G. Sartor 14:3

from the the official flight schedule and mainly depends on the entry and exit point of the
airplane in that sector. Moreover, we indicate with Γf the minimum departure time of a
flight f in respect to a certain reference time that is common to all f ∈ F .

We can now start building the MILP model by associating a scheduling variable t(f,s) ∈ IR
to each route node (f, s) ∈ R, where t(f,s) represents the time flight f enters sector s. Note
that the time a flight exits a particular sector is equal to the time the flight enters the
subsequent sector in its route. We also introduce a fictitious variable to ∈ IR, which serves as
a reference time for all airplanes. Thus, we have

t(f,s) − to ≥ Γf , (f, s) ∈ D. (1)

Now let (f, s), (f, s+1) ∈ R be two consecutive route nodes in a particular flight route. Then
the following precedence constraints must hold:

t(f,s+1) − t(f,s) = Λ(f,s). (2)

In fact, we assume that each airplane travels at fixed speed throughout its route, but it is
allowed to delay its departure.

Now, for each pair of distinct flights f, g ∈ F , we denote by S(f, g) the shared sectors,
and for each s ∈ S(f, g) we introduce the binary quantity xsfg, which is 1 if and only if f and
g meet in s. Consider now a set of distinct flights F̄ ⊆ F traversing a sector s, and assume
that |F̄ | > cs. Then, the following hotspot constraints must hold:∑
{f,g}⊆K

xsfg ≤
(
cs + 1

2

)
− 1, K ⊆ F̄ , |K| = cs + 1, s ∈ S. (3)

It is easy to see that these constraints are enough to guarantee that at most cs flights meet
in sector s. This is indeed a straightforward application of the well-known Helly’s Theorem
in one dimension, which states that a set of intervals in IR (i.e., the time) has a nonempty
intersection if and only if every pair intersects.

Observe that, for a pair of distinct flights f, g traversing a sector s, exactly one of the
following three conditions must occur: a) flight f and g meet in sector s, or b) flight f
traverses sector s before flight g, or c) flight g traverses sector s before flight f . For each
ordered pair of flights (f, g) ∈ F̄ , we define ysfg to be equal to 1 if f exits s before g enters,
and 0 otherwise. Then, we have that

ysfg + ysgf + xsfg = 1, {f, g} ⊆ F̄ , s ∈ S. (4)

So, precisely one of the above three variables will be 1 in any feasible solution. Accordingly,
for every {f, g} ⊆ F̄ , s ∈ S, the schedule t will satisfy a family of disjunctive constraints that
can be modeled by means of a conjunction of big-M constraints as follows:

(i) t(g,s) − t(f,s+1) ≥ −M(1− ysfg),

(ii) t(f,s) − t(g,s+1) ≥ −M(1− ysgf),

(iii) t(g,s+1) − t(f,s) ≥ −M(1− xsfg),

(iv) t(f,s+1) − t(g,s) ≥ −M(1− xsfg),

ysfg, y
s
gf , x

s
fg ∈ {0, 1},

(5)

ATMOS 2018

14:4 The Path&Cycle formulation for the Hotspot Problem in Air Traffic Management

where M is a suitably large positive constant, and t(h,s+1) is the time the flight h enters
the sector next to s in its route (i.e., the time h exits sector s). Indeed, if ysfg = 1 then (ii)
and (iii) and (iv) become redundant, whereas constraint (i) reduces to t(g,s) − t(f,s+1) ≥ 0,
which implies that f exits s before g enters s. Similarly, when (ii) is active, g exits s before
f enters. On the other hand, when xsfg = 1, then (i) and (ii) become redundant, whereas
(iii) and (iv) are active, implying that both f and g exit the sector s after the other flight
enters it (i.e., they meet in s).

In conclusion, a complete MILP formulation for the Hotspot Problem can be obtained
by considering constraints (1) and (2) for all routes, and constraints (3), (4), and (5) for all
sectors s ∈ S and all sets F̄ ⊆ F of flights exceeding the capacity cs of s. We call this the
big-M formulation (BF).

Let P ⊂ IRp be the set of points (y, x, t) satisfying all such inequalities, then our problem
reduces to {min c(t) : (y, x, t) ∈ P}.

The objective c(t) may vary from instance to instance, but in this paper it will simply be
the (weighted) delay at destination.

In principle, formulation BF could be solved by resorting to any off-the-shelf MILP
solver. However, the families of constraints (3), (4) and (5) can grow very quickly1, making
the formulation impractical even for small-medium size realistic instances. A standard way
to tackle this issue is to make use of row generation. Namely, constraints are generated
dynamically and added to the model only if they are violated by the incumbent integer
feasible solution. An algorithm to solve formulation BF is presented in Algorithm 1.

Algorithm 1 An algorithm for the big-M formulation
P ← Set of precedence constraints
H ← ∅ . Set of hotspot constraints
D ← ∅ . Set of disjunctive constraints
M← min

y,x,t
c(t), subject to P,H, and D . MILP model for BF

(y, x, t)← incumbent solution ofM
while true do

SolveM
if y, x, t violates a disjunction constraint D then
D ← D ∪D . Row generation
continue

else if y, x, t violates a hotspot constraint H then
H ← H∪H . Row generation
continue

else
break . Found optimal!

3 A non-compact reformulation

In the previous section we presented a compact formulation that fully characterizes the
Hotspot Problem, and we presented an algorithm to solve it in a practical context. However,
BF still contains one major sources of complexity. In fact, in order to make the constraints in

1 The total number of constraints is O(|S||F |cs) in (3), and is O(|S| × |F |2) in (4) and (5).

C. Mannino and G. Sartor 14:5

o

(f, s1) (f, s) (f, s+1) (f, sq)

(g, s′
1) (g, s) (g, s+1) (g, s′

r)

Γf

Λ(f,s)

-Λ(f,s)

Γg

Λ(g,s)

-Λ(g,s)

ys
fg

0ys
gf

0

xs
fg

0 xs
fg

0

Figure 1 A disjunctive graph for a pair of flights f, g that meet in sector s. Note that, the
sector associated with the node (f, s+1) might be different from the sector associated with (g, s+1).
For each flight, the precedence edges enforce a fixed traversing time Λ in the corresponding sector.
Instead, the zero-weighted conflict edges are each associated to a binary variable, and they become
binding only if the corresponding binary variable is equal to 1.

(5) redundant for certain values of the binary variables, we made use in BF of the (in)famous
big-M method. Unfortunately, including a large coefficient in the model usually makes the
formulation weak and prone to return poor bounds in the search trees, often leading to slow
solution times.

Our approach to tackle this problem and solve {min c(t) : (y, x, t) ∈ P} extends the
methodology first developed in [3]. In particular, we exploit a Benders-like decomposition to
obtain a (master) problem only in the binary variables, plus a few continuous variables to
represent the objective function. The decomposition allows us to get rid of big-M coefficients
(at the cost of an increased number of linear constraints). Moreover, the constraints of the
reformulated master correspond to basic graph structures in the so called disjunctive graph,
such as paths and cycles.

We sketch here how the reformulation is obtained. First, we consider the disjunctive
graph associated with our big-M formulation BF . This is a directed graph G = (V,E)
obtained by considering a vertex for every route node u ∈ R, plus an extra node: the origin
o. A directed edge (u, v) of length luv in the disjunctive graph represents an inequality
tv − tu ≥ luv, indicating that the minimum travel time from route node u to route node v is
luv. Therefore, we can add edges to G to represent some of the constraints of BF .

In particular, the origin is connected with a direct edge (o, df) to the node df ∈ D,
corresponding to the departure node of flight f ∈ F . The length of edge (o, df) equals the
minimum departure time of flight f ∈ F , Γf . Then we add an edge (u, v) of weight Λu and
an edge (v, u) of weight −Λu, for every constraint (2). These are called the precedence edges.

Consider now inequalities (5.i)-(5.iv). For every variable ysfg, we add the edge (u, v) with
length zero, where u, v are the route nodes associated with t(f,s+1), t(g,s), respectively. In
fact, if ysfg = 1 then t(g,s) − t(f,s+1) ≥ 0. These edges are called y-edges, and the set of
y-edges is denoted by Ky. Similarly, with every variable xsfg we associate two edges of length
zero: these edges are called x-edges, and the set of x-edges is denoted by Kx. For e ∈ Ky

(e ∈ Kx), we let ye (xe) be the y-variable (x-variable) that generates e. The set Ky ∪Kx is
the set of conflict edges.

Figure 1 shows how a disjunctive graph would look like for a couple of flights that meet
at least in one sector.

Consider now a feasible solution (ȳ, x̄, t̄) to (2), (3), (4) and (5). Let G(ȳ, x̄) be the graph

ATMOS 2018

14:6 The Path&Cycle formulation for the Hotspot Problem in Air Traffic Management

obtained from the disjunctive graph by removing all the edges e ∈ Ky with ȳe = 0 and all
the edges e ∈ Kx with x̄e = 0. Note that the vector (ȳ, x̄) ∈ {0, 1}Ky∪Kx is the incidence
vector of the subset of conflict edges contained in G(ȳ, x̄), and we say that such edges are
selected by (ȳ, x̄). Then the following lemma holds.

I Lemma 1. i.) G(ȳ, x̄) does not contain strictly positive directed cycles. ii.) If (ȳ, x̄, t̄) is
an optimal solution, and t̄af

is the associated arrival time of flight f ∈ F , then t̄af
equals the

length of the longest path from the origin o to route node af ∈ A in G(ȳ, x̄).

Proof. When variables y, x are fixed, it is easy to see that the problem BF reduces to the
dual of a max-cost flow problem. Then, the result follows immediately from well-known
theorems of network theory. J

Note that our objective function is simply c(t) =
∑
a∈A ta, but the following results can be

immediately extended to any function non-decreasing with t.
The lemma has two straightforward consequences: any feasible solution corresponds to a

selection ȳ, x̄ of conflict edges such that G(ȳ, x̄) does not contain a strictly positive directed
cycle; and, for any feasible selection ȳ, x̄, the best possible scheduling corresponds to the
longest path tree in G(ȳ, x̄).

In this context, the Hotspot Problem (HP) can be stated as follows: find a feasible
selection y, x of conflict edges such that G(y, x) does not contain a strictly positive directed
cycle, the sum of the lengths of the longest paths from the origin o to the arrival nodes a ∈ A
is minimum, and the resulting schedule is hotspot-free.

Let us denote by C the set of strictly positive length di-cycles of G, and by L∗(y, x, u) the
length of the longest path from o to u in G(y, x). Then a new formulation for the Hotspot
Problem can be written as follows:

min
∑
u∈A

L∗(y, x, u)

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|.

(6)

Constraint (6.ii) ensures that one does not select all the conflict edges contained in a strictly
positive di-cycle. Equivalently we write

min
∑
u∈A

µu

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iv) µu ≥ L∗(u, y, x), u ∈ A,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|, µ ∈ IR|A|.

(7)

C. Mannino and G. Sartor 14:7

We can finally rewrite constraints (7.iv) in a way that can be immediately exploited in a row
generation algorithm. We denote by H the set of all G(y, x) for (y, x) satisfying (7.i), (7.ii),
(7.iii). If H ∈ H, then we denote by Pu(H) the (set of edges of a) longest path from o to u
in H, and by Lu(H) the length of Pu(H). The final reformulation can now be written as
follows:

min
∑
u∈A

µu

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iv) Lu(H)(
∑

e∈Ky∩Pu(H)
ye +

∑
e∈Kx∩Pu(H)

xe − |K ∩ Pu(H)|+ 1) ≤ µu, u ∈ A,H ∈ H,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|, µ ∈ IR|A|.
(8)

Indeed, consider a feasible solution (ȳ, x̄, µ̄) to (8). Let H̄ = G(ȳ, x̄) and let P̄u(H̄) be a
longest path from o to u in H̄. Then all conflict edges on P̄u(H̄) are selected by ȳ, x̄ and we
have ∑

e∈Ky∩P̄u(H̄)

ȳe +
∑

e∈Kx∩P̄u(H̄)

x̄e − |K ∩ P̄u(H̄)|+ 1 = 1

which in turn implies

µ̄u ≥ Lu(H̄) = L∗(ȳ, x̄, u).

On the other hand, when one or more edges in a path are not selected, then the constraint is
satisfied for any µu ≥ 0.

We call Problem (8) the Path&Cycle formulation (PC) of the Hotpot Problem and we
solve it with the algorithm described in Algorithm 2. Constraints (8.i) are called the selection
constraints, (8.ii) are called the cycle constraints, (8.iv) are called the path constraints, and
(8.iii) are called the hotspot constraints.

In short, the algorithm works by generating combinations of the x, y variables such
that

∑
u∈A µu is minimized. If a particular solution (ȳ, x̄) is such that G(ȳ, x̄) contains a

positive cycle or (8.1) is not satisfied, then the corresponding constraint is added the problem.
Otherwise, the longest paths Lu(G(ȳ, x̄)), u ∈ A are computed. If there exists a u ∈ A

such that Lu(G(ȳ, x̄)) > µu, then the corresponding path constraint is added to problem.
Otherwise, the algorithm is able to use variables x, y, µ to produce a schedule for the t
variables. If this schedule violates the capacity of any of the sectors, then the corresponding
hotspot constraint is added to the problem. Finally, if none of these inequalities needs to be
added, then we found the optimal solution.

4 Computational experiments

In this section we analyze the performance of the BF formulation versus the PC formulation
on randomly generated instances. Each instance represents a snapshot (in time) of the

ATMOS 2018

14:8 The Path&Cycle formulation for the Hotspot Problem in Air Traffic Management

Algorithm 2 An algorithm for the Path&Cycle formulation
G← disjunctive graph
S ← ∅,H ← ∅ . Sets of selection and hotspot constraints
C ← ∅,P ← ∅ . Sets of cycle and path constraints
M← min

y,x,µ
µT1, subject to S,H,C, and P . MILP model for PC

(y, x, µ)← incumbent solution ofM
while true do

while true do
SolveM
if y, x violates a selection constraint S then
S ← S ∪ S . Row generation
continue

else if y, x violates a cycle constraint C then
C ← C ∪ C . Row generation
continue

else
Find the longest paths in G(y, x)
if (y, x, µ) violate a path constraint P then
P ← P ∪ P . Row generation
continue

else
break

if x, y violates a hotspot constraint H then
H ← H∪H . Row generation
continue

else
break . Found optimal solution!

C. Mannino and G. Sartor 14:9

situation of an airspace made of 400 sectors where 20 airports are placed randomly and a
certain number of flights is scheduled (with random departure times) between two randomly
chosen airports (see Figure 2). We must say that real-life data is available, but we are not
allowed (yet) to use it. However, exploiting the information obtained from the real-life data,
we selected 30 “realistic” random instances2.

The algorithm has been implemented in C] and interfaced with CPLEX 12.8 using its
default parameters except for the following: the number of available threads was set to 1,
the advanced start switch was set to 0, and both dual reduction and dynamic search were
disabled. The information used for the advanced start (sometimes also called warm start) is
poorly exploited by CPLEX in our context, and led to inconsistent results. Instead, dual
reduction and dynamic search are automatically disabled by CPLEX when row generation is
implemented using callback functions.

The results of Table 1 show a consistent and sometimes dramatic improvement in the
solution time of the PC formulation. The strength of this new formulation (compared to the
BF formulation) is demonstrated particularly by the smaller number of branch and bound
nodes visited before reaching the optimal solution. This is mostly due to the absence of
the large coefficient M in PC. In fact, the LP relaxation of BF at a particular node of the
search tree is usually very poor, preventing an effective pruning of the branches of the search
tree.

Overall, the Path&Cycle formulation for the Hotspot Problem proved to be very promising
when compared to a more common formulation. Moreover, this formulation can be easily
extended/modified to handle other job-shop scheduling problems.

References
1 Cyril Allignol, Nicolas Barnier, Pierre Flener, and Justin Pearson. Constraint programming

for air traffic management: a survey 1: In memory of pascal brisset. The Knowledge
Engineering Review, 27(3):361–392, 2012.

2 Thomas Dubot, Judicaël Bedouet, and Stéphane Degrémont. Modelling, generating and
evaluating sector configuration plans-methodology report of the sesar vp-755 exercise. In
30th Congress of the International Council of the Aeronautical Sciences (ICAS 2016), 2016.

3 Leonardo Lamorgese and Carlo Mannino. A non-compact formulation for job-shop schedul-
ing problems in transportation (Dagstuhl Seminar 16171). Dagstuhl Reports, 6(4):151,
2016. submited to Operations Research, under revision. URL: http://drops.dagstuhl.
de/opus/volltexte/2016/6694, doi:10.4230/DagRep.6.4.139.

4 Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, 2002.

5 Tolebi Sailauov and ZW Zhong. An optimization model for large scale airspace. Interna-
tional Journal of Modeling and Optimization, 6(2):86, 2016.

6 Nina Schefers, Miquel Angel Piera, Juan José Ramos, and Jenaro Nosedal. Causal analysis
of airline trajectory preferences to improve airspace capacity. Procedia Computer Science,
104:321–328, 2017.

7 Bo Vaaben and Jesper Larsen. Mitigation of airspace congestion impact on airline networks.
Journal of Air Transport Management, 47:54–65, 2015.

2 The instances are available from the authors upon request.

ATMOS 2018

http://drops.dagstuhl.de/opus/volltexte/2016/6694
http://drops.dagstuhl.de/opus/volltexte/2016/6694
http://dx.doi.org/10.4230/DagRep.6.4.139

14:10 The Path&Cycle formulation for the Hotspot Problem in Air Traffic Management

Figure 2 A snapshot of one of the instances where the sector capacity cs is equal to 3, and a
hotspot is highlighted in red. The orange number at the top left corner of each sector shows the
current occupancy of the sector. The shades of turquoise simply indicate the number of flight routes
traversing a particular sector, helping the visual analysis of an instance.

C. Mannino and G. Sartor 14:11

ID |F | cs Solved hotspots Visited nodes Time (s) Speed up

PC BF PC BF PC BF

ATM1 122 3 13 13 1016 19175 1.06 4.99 4.7x
ATM2 137 3 13 13 3062 36806 1.35 10.38 7.7x
ATM3 131 3 8 8 109 774 0.18 0.28 1.5x
ATM4 142 3 13 13 833 40482 0.73 6.43 8.8x
ATM5 110 3 12 12 795 31117 0.39 7.38 18.8x
ATM6 127 3 5 5 79 570 0.16 0.17 1.1x
ATM7 115 3 1 1 0 5 0.05 0.05 1.0x
ATM8 120 3 4 4 2 97 0.05 0.10 1.8x
ATM9 131 3 4 4 42 554 0.08 0.16 2.1x
ATM10 143 3 8 8 76 2313 0.18 0.48 2.6x
ATM11 136 3 15 15 371 39300 0.31 14.90 47.3x
ATM12 142 3 9 9 274 1974 0.22 0.57 2.6x
ATM13 139 3 11 11 118 2217 0.19 0.94 5.1x
ATM14 126 3 7 7 60 2182 0.13 0.59 4.6x
ATM15 139 3 9 9 3625 172950 0.88 50.61 57.4x
ATM16 288 5 4 4 47 1579 0.27 0.71 2.6x
ATM17 289 5 9 9 113 12503 0.38 6.05 16.0x
ATM18 278 5 6 6 183 2188 0.37 1.23 3.3x
ATM19 259 5 3 3 0 296 0.15 0.20 1.4x
ATM20 254 5 5 5 55 1977 0.23 1.01 4.3x
ATM21 279 5 6 6 255 4175 0.32 2.10 6.6x
ATM22 287 5 3 3 0 985 0.11 0.32 2.8x
ATM23 259 5 6 6 37 2452 0.25 1.00 4.0x
ATM24 281 5 4 4 161 1350 0.47 0.60 1.3x
ATM25 296 5 4 4 71 1518 0.22 0.60 2.7x
ATM26 275 5 7 7 50 2872 0.41 1.32 3.2x
ATM27 256 5 5 5 464 5042 0.46 1.58 3.5x
ATM28 273 5 6 6 298 1542 0.60 0.91 1.5x
ATM29 274 5 6 6 193 104627 0.53 35.09 66.7x
ATM30 287 5 7 7 1306 9129 0.75 3.10 4.1x
Table 1 Results on 30 randomly generated instances. The table shows the number of scheduled

flights, the capacity cs of the sectors (all the sectors have the same capacity), and how many hotspots
have been solved by each algorithm (curiously, for these instances they are all equal, although this is
not always the case since the hotspot constraints are added dynamically and each algorithm may
take a different path to reach the optimal solution). It also reports the total number of nodes visited
by the branch and bound algorithm, and the total time required to find the optimal solution. The
last column is the ratio between the computation time of BF and the computation time of P C, and
indicates the speed up obtained by using P C instead of BF .

ATMOS 2018

	Introduction
	A MILP big-M model for the Hotspot Problem
	A non-compact reformulation
	Computational experiments

