
Vehicle Scheduling Based on a Line Plan
Rolf N. van Lieshout
Erasmus University Rotterdam
Econometric Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
vanlieshout@ese.eur.nl

Paul C. Bouman
Erasmus University Rotterdam
Econometric Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
bouman@ese.eur.nl

Abstract
We consider the following problem: given a set of lines in a public transportation network with
their round trip times and frequencies, a maximum number of vehicles and a maximum number of
lines that can be combined into a vehicle circulation, does there exist a set of vehicle circulations
that covers all lines given the constraints. Solving this problem provides an estimate of the costs
of operating a certain line plan, without having to compute a timetable first. We show that
this problem is NP-hard for any restriction on the number of lines that can be combined into a
circulation which is equal to or greater than three. We pay special attention to the case where at
most two lines can be combined into a circulation, which is NP-hard if a single line can be covered
by multiple circulations. If this is not allowed, a matching algorithm can be used to find the
optimal solutions, which we show to be a 16

15 -approximation for the case where it is allowed. We
also provide an exact algorithm that is able to exploit low tree-width of the so-called circulation
graph and small numbers of vehicles required to cover single circulations.

2012 ACM Subject Classification Applied computing → Transportation, Mathematics of
computing → Graph algorithms

Keywords and phrases Vehicle scheduling, integrated railway planning, (fractional) matching,
treewidth.

Digital Object Identifier 10.4230/OASIcs.ATMOS.2018.15

1 Introduction

Traditionally, the planning of public transport services occurs in a number of steps. First,
a line plan is constructed where service routes, usually referred to as lines, are selected
such that high quality service is provided to the customers [5, 14]. In the second step, a
timetable is constructed that specifies the departure and arrival times along the stops of all
lines [6, 10]. In the final step, vehicles and possibly human resources are planned as they are
necessary resources to execute the services [1, 8, 11]. As the individual scheduling steps are
already quite challenging, the sequential planning approach is traditionally applied because
an integrated approach is computationally not tractable. The disadvantage of the sequential
approach is that the objectives of the subsequent steps are not taken into account when the
prior steps are solved. In particular, the line plan and timetable are usually optimized based
on passengers’ convenience, while the vehicle schedule is optimized based on the operator
costs. Therefore, the optimal solution for the combined problem is likely to be missed.

Recently, a number of authors have proposed ideas to integrate the separate planning
steps. One example, the eigenmodel [15], replaces a fixed order with an iterative approach
that takes a different route through the separate steps, controlling both the passengers’

© Rolf N. van Lieshout and Paul C. Bouman;
licensed under Creative Commons License CC-BY

18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018).
Editors: Ralf Borndörfer and Sabine Storandt; Article No. 15; pp. 15:1–15:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vanlieshout@ese.eur.nl
mailto:bouman@ese.eur.nl
http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Vehicle Scheduling Based on a Line Plan

convenience and the operator costs during the process. Another approach [12] incorporates
penalties during the line planning phase for lines which can not be covered efficiently by a
vehicle in a periodic timetable. That is, assuming the cycle time is 60 minutes, a line with
frequency one for which a round trip takes 54 minutes (a downtime of 6 minutes) is given
a low penalty, while a line with frequency one for which a round trip takes 65 minutes (a
downtime of 55 minutes) is given a very high penalty.

In this paper, we consider the construction of vehicle schedules based on the line plan
without the intermediate step of constructing a timetable. One goal of this is to quickly assess
whether a line plan can be operated using a small number of vehicles. This allows public
transport operators to detect potential inefficiencies early in the planning process, without
having to compute a timetable first. The novel aspect of our approach is that we explicitly
consider the possibility to combine lines into larger vehicle circulations. To illustrate, while a
line that takes 65 minutes with a period of 60 minutes may seem inefficient by itself, it may
be a good option if we can combine it with a line of 55 minutes. Although combinations of
lines can help to reduce the number of vehicles required to operate a line plan, large and
complex combinations of lines may result in greater dependencies between the operations of
the different lines. Therefore, we provide a detailed examination of cases where at most two
lines can be combined in a vehicle schedule.

The remainder of this paper is organized as follows. In Section 2 we introduce the vehicle
circulation scheduling problem. In Section 3 we study the computational complexity of the
general case. In Section 4 we study the special case where only two lines can be combined in
a circulation. We conclude and discuss ideas for future research in Section 5.

2 Problem Formulation

In this paper, we assume a line plan is already given and want to determine the minimum
number of vehicles that are required to operate the line plan without the intermediate step
of constructing a timetable. For the line plan, we have a fixed time period denoted by T and
a set of lines L where a line {v, u} ∈ L is an unordered pair of terminal stations of the line.
The line graph L = (V,L) has terminal stations V as vertices and the lines as edges. In the
line plan each line l ∈ L has a round trip time tl and an integer frequency fl assigned to it.
The round trip times specified by the line plan should at least include the minimum driving
and dwelling times required to execute the line, but can also include some slack to make
operations more robust against disruptions. The frequency defines the number of times the
line service must be executed by a vehicle within each time period of length T .

If vehicles are only allowed to operate a single line, the number of vehicles required for
line l equals

⌈
tl
T fl
⌉
. In order to reduce the number of vehicles required to operate the line

plan, public transport operators may consider circulations, which are a combination of lines
that can be executed by a single vehicle. Formally, a circulation c ⊆ L is a set of lines that
can be operated by one or more vehicles. We allow lines to be contained more than once
in the set, since this can be relevant if the line has a frequency greater than 1. We call the
number of times a line l is contained in a circulation the multiplicity of l in c. Furthermore,
we assume that a summation over the lines in the circulation includes a line multiple times
if it has a multiplicity greater than 1. An example of a situation where we want to assign
the same line to a circulation multiple times, is a line with a round trip time of T

2 and a
frequency of 2. In that case, we want to consider a circulation where we execute the line
twice during each period.

For this paper, we only consider circulations c such that the lines it contains form a

R.N. van Lieshout and P. C. Bouman 15:3

connected subgraph of L. As a consequence of this, the time tc needed to perform a single
round trip of a circulation c can be expressed as tc =

∑
l∈c tl. Furthermore, a circulation c

corresponds to a directed Eulerian tour in ←→L , where ←→L is the directed line graph, which is a
a symmetric directed graph derived from L where each edge of L is replaced by two arcs,
one for each direction. Let us now consider the correspondence between a connected subset
of L and the directed cycle in ←→L .

I Lemma 1. A connected subset c ⊆ L of lines in the line graph L corresponds to a directed
Eulerian sub-graph in the directed line graph ←→L . Thus, there always exists a directed cycle in←→
L that visits all arcs that correspond to both directions of the lines in c a number of times
that is exactly equal to the multiplicity of the lines in the circulation.

Proof. A directed graph contains a directed Eulerian cycle if two conditions hold: (1) for
every vertex the in-degree is equal to the out-degree, and (2) the graph is strongly connected.
Since the graph ←→L is symmetric, each vertex must have one outgoing arc for each incoming
arc, and thus condition (1) always holds. As c is a connected subset of lines, the corresponding
lines in ←→L must be connected as well. Since the graph is symmetric, this implies that it is
also strongly connected. J

Although more general concepts of circulations that do not enforce connectivity can be
considered, these would require dead-heading of vehicles as part of a line plan. While public
transport operators have to use dead-heading when operations start up, or frequencies of
lines are changed throughout the day, it is usually avoided as much as possible by public
transport operators during regular operations. As we focus on regular operations, we consider
those generalized concepts of circulations beyond the scope of this paper.

In the problem we consider we do not only need to decide which circulations should be
used, but we also have to decide how many vehicles must be assigned to each circulation
to cover the constraints of the line plan. Since a circulation c can have a round trip time
that is larger than T , we may need to assign multiple vehicles to it in order to enforce
that every line in the circulation is covered during every period. We define the number of
vehicles required to perform the circulation once in every period as kc = d tcT e. If we would
assign fewer vehicles than kc to a circulation, the vehicle is not finished with its circulation
when a new period starts and as a consequence no vehicle executes the circulation during
some periods. Furthermore, an upper bound on the number of vehicles that can be assigned
to a circulation c is given by the expression minl∈c flkc, as assigning more vehicles to the
circulation would imply that the line where the minimum was attained is executed with
greater frequency than the line plan prescribes. In the special case that all frequencies are 1,
kc itself is an upper bound on the number of vehicles that can be assigned to c.

Note that we do not enforce that each line is covered by a single circulation. For example,
suppose we have two lines a and b with round trip times ta = tb = 30, but different frequencies
fa = 3 and fb = 1, with a period time of T = 60. The most efficient way to cover these
lines is to have one vehicle circulation that executes line a two times each period, while a
second vehicle alternates between line a and line b, executing both lines once each period.
We investigate a strict version of the problem where a line can only be covered by a single
circulation in Section 4.2.

The goal of the problem studied in this paper is to find a set of circulations and the number
of vehicles assigned to each circulation such that all lines are covered. From a practical
point of view it is desirable that the selected circulations do not contain too many lines, as
this creates significant dependencies in the operations that make the operations extremely
sensitive to minor disruptions. When a disruption occurs somewhere in a circulation, all

ATMOS 2018

15:4 Vehicle Scheduling Based on a Line Plan

subsequent lines in the circulation are affected. Furthermore, very large circulations can only
be operated in practice if the timetables of all the lines in the circulation are synchronized.
This may lead to problems in the timetabling phase, especially if you want to offer good
transfer possibilities to passengers who want to follow different paths than the vehicles.

To avoid large circulations, we consider a restriction on the maximum number of lines
than can be included in a circulation. We call a circulation c an α-circulation if the number
of unique lines in c is α. A 1-circulation is also referred to as a fixed circulation and a
2-circulation is also referred to as a combined circulation. We introduce an input parameter κ
that restricts the number of unique lines that can be combined in a single circulation. With
this concept clearly defined, we can introduce the decision variant of our problem in a formal
way:

Vehicle Circulation Scheduling Problem (VCSP)
Instance: A line graph L = (V,L), a maximum number of of unique lines that are
allowed to exist in a single circulation κ and a maximum number of vehicles z
Question: Does there exist a set of circulations C, with for each circulation c ∈ C a
value assigned to the integer decision variable θc ∈ N that indicates how many vehicles
are assigned to circulation c, such that:
(1) the circulations cover all lines in every period, i.e. ∀l ∈ L : fl =

∑
c∈C:l∈c

θc

kc
,

(2) there are no α-circulations in C with α > κ, and
(3) at most z vehicles are required to execute all circulations, i.e.

∑
c∈C θc ≤ z.

The optimization version of this problem seeks to find the smallest z for a given line
graph and a given parameter κ, such that there exists a set of circulations C with integer
vehicle assignments θ that satisfy the conditions.

3 Computational Complexity

First, we consider a lower bound on the number of vehicles that is needed in a given line graph.
Since we are not allowed to use dead-heading, we must consider the connected components
of a line graph separately, as no vehicle will be able to move from one component to another.
Thus without loss of generality we assume that a line graph is connected, since if it is not we
can decompose the problem into independent sub-problems. A lower bound on the number
of vehicles required can be computed by dividing the total running time by the cycle time.
As no fractional vehicles can be used, we can round the number of vehicles up. This gives
the following necessary condition to check if the instance can possibly be a YES-instance:

z ≥
⌈∑

l∈L tl · fl
T

⌉
(1)

If we have an instance of the problem where |L|-circulations are allowed, i.e. κ ≥ |L|, this
lower bound can be obtained by a single circulation that contains all lines as many times as
their frequency dictates. Thus all such instances are YES-instances.

If we are only allowed to used fixed circulations, i.e. κ = 1, the only way to cover all lines
is to use a fixed circulation for each line. In this case an instance is a YES-instance if and
only if z is sufficient for the sum over all fixed circulations:

z ≥
∑
l∈L

⌈
tl · fl
T

⌉
(2)

I Theorem 2. Any instance with κ ≥ |L| for which the condition of Equation 1 holds is a

R.N. van Lieshout and P. C. Bouman 15:5

YES-instance. Any instance with κ = 1 is a YES-instance if and only if the condition of
Equation 2 holds.

As we noted earlier, circulations that do not contain too many lines are preferred as they
have many advantages. However, the number of vehicles required with fixed circulations can
be significantly greater than when any circulation is allowed. We can see this via application
of the following general identity for sums over ceiling functions. Suppose we have a sequence
a1, . . . an of n numbers with n ≥ 2, then it is straightforward to show that

n∑
i=1
daie −

⌈
n∑
i=1

ai

⌉
≤ n− 1 (3)

Thus, we can see that the difference between the lower bound of Equation 2 and Equation 1
can become as large as |L| − 1. If we allow 2-circulations, we are able to halve the number
of terms in Equation 2 which halves the worst case gap. It thus can be very beneficial
to consider restrictions on the circulation κ that are small but strictly greater than one.
Unfortunately, for any case with a fixed κ ≥ 3, we can show that the resulting problem
becomes NP-hard.

I Theorem 3. For any fixed κ ≥ 3, the Vehicle Circulation Scheduling Problem is NP-hard.

Proof. We show this by reduction from 3-partition. Let S = {s1, s2, . . . , sm} be a set of
integers such that

∑m
i=1 si = m

3 B and ∀1 ≤ i ≤ m : B4 < si <
B
2 . A 3-partition instance is a

YES-instance if it is possible to partition S into n = m
3 triplets S1, S2, . . . Sn such that each

triplet sums to B.
For the case where κ = 3, we reduce the 3-partition instance to a line graph L = (V,L)

where we have a central hub station v0 ∈ V and m external stations v1, . . . , vm ∈ V . This
line plan must be periodically operated in a period of T = B time units. Furthermore we
have a set of m lines where li ∈ L = {v0, vi}, with frequency fi = 1 and a round trip and
total time equal to si. As the sum of the round trip times is exactly mB, the only way to
execute this line plan with m vehicles is to have every circulation take B time. Otherwise,
at least one circulation will require two vehicles. Thus we set z = m. If the 3-partition
instance is a YES-instance, we can use the triplets to create 3-circulations with this precise
property. If the 3-partition instance is a NO-instance, we can not nicely divide the lines over
3-circulations and thus need at least one additional vehicle.

For cases where κ > 3, we scale the 3-partition instance by setting s′i = 4 · κ · si and
B′ = (κ− 3) + 4 · κ ·B. This way we make sure that B′

4 > κ− 3. We now introduce a set of
κ · n lines where lines l1, . . . , lm have round trip times s′1, . . . , s′m and lines lm+1, . . . , lκ·n all
have round trip time of 1. We define 1 + κ terminal stations and let lines i connect terminal
stations {v0, vi} in the same structure as the κ = 3 case. By construction, only circulations
that consist of κ− 3 lines with round trip time 1 and three other lines can sum up to B′.
This way it is enforced that it is a YES-instance if and only if the 3-partition instance is a
YES-instance. J

4 Fixed and Combined Circulations

Of special interest is the case of κ = 2 where we are only allowed to have fixed and combined
circulations, as this gives us some flexibility to decrease the number of vehicles required to
operate the line plan, while we still keep the number of lines in a circulation low. Since
all finite cases with κ > 2 are NP-hard, the κ = 2 case is also of particular interest from a
theoretical perspective.

ATMOS 2018

15:6 Vehicle Scheduling Based on a Line Plan

For the remainder of this section, we restrict ourselves to instances of the vehicle circulation
scheduling problem where the frequency of each line is 1. Although this restriction may seem
unrealistic, we can approximate instances with higher frequencies either by splitting up a line
l with a frequency higher than 1 into fl lines with frequency 1 and the same characteristics
or by increasing the round trip times as a function of the frequencies. The straightforward
approach increases the round trip times based on the frequency, i.e. the new round trip time
becomes fl · tl. More sophisticated approaches can add slack to model the periodicity in
more detail in order to increase the probability that a regular timetable exists, possibly at
the cost of requiring more vehicles to execute the line plan.

Figure 1 Example of a line graph with round trip times and the corresponding circulation graph.
The cycle time T is 60.

In case κ = 2 and fl = 1 for all lines, we can represent an instance of the VCSP by a
circulation graph G = (L, E). In this graph, the lines are the vertices and the edges are
the circulations. The set of edges consists of edges for the fixed circulations E1 and of the
2-circulations E2, thus E = E1 ∪ E2. The set E1 contains a self loop for every line li ∈ L.
The set E2 contains an edge between two lines li and lj if they have a common terminal
station. To ease notation, we denote a circulation {li} ∈ E1 simply as li.

An example of a VCSP instance represented by a circulation graph is given in Figure 1.
On the circulation graph, we also depict the kc value of each circulation c. For the self loops,
these values are depicted inside the nodes to make the graph more clear. For example, line
3 has a round trip time of 70 minutes, so k3 =

⌈ 70
60
⌉

= 2. Line 4 also needs 2 vehicles if
it is performed in a fixed circulation, but if lines 3 and 4 are combined only 3 vehicles are
required to operate both lines since k34 =

⌈ 70+100
60

⌉
= 3.

Using the circulation graph, we can formulate the following optimization problem for the
VCSP:

ν(L) = min
θ

∑
c∈E

θc (4)

s.t. 1
kl
θl +

∑
c∈E2|l∈c

1
kc
θc = 1 ∀l ∈ L, (5)

θc ≥ 0 and integer ∀c ∈ E, (6)

The objective is to minimize the number of used vehicles. We now consider how to rewrite
this problem to a maximization problem where the goal is to maximize the number of saving
circulations. First note that we can rewrite the summation in the objective of Equation 4 by
splitting the summation over E into summations over E1 and E2, and that by definition a

R.N. van Lieshout and P. C. Bouman 15:7

summation over E1 is equal to a summation over L. We rewrite the objective as follows:

min
θ

∑
l∈L

θl +
∑
c∈E2

θc (7)

In the next step we make use of Constraints 5, which state that a line is included in a
sufficient number of circulations. As these constraints imply that θl = kl −

∑
c∈E2|l∈c

kl

kc
θc,

we can substitute the left term to obtain

min
θ

∑
l∈L

kl − ∑
c∈E2|l∈c

kl
kc
θc

+
∑
c∈E2

θc (8)

Note that the double summation over l ∈ L and c ∈ E2|l ∈ c can also be written as a double
summation over c ∈ E2 and l ∈ c. Rewriting the double summation and reshuffling some
terms gives:

∑
l∈L

kl + min
θ

∑
c∈E2

(
θc −

∑
l∈c

kl
kc
θc

)
(9)

In the last step we factor out θc

kc
and Equations 4 – 6 are written as:

ν(L) =
∑
l∈L

kl + min
{∑
c∈E2

[
kc −

∑
l∈c

kl

]
θc
kc
, s.t. (5) – (6)

}
(10)

If we now apply Equation 3, it can be seen that
[
kc −

∑
l∈c kl

]
equals either -1 or 0. If the

term is -1, we call the circulation saving, otherwise we call it non-saving. For example, in
Figure 1, circulation {3, 4} is saving, while circulation {1, 2} is non-saving. If we let the set
of all saving circulations be denoted as ES2 , we have that ν(L) =

∑
l∈L kl − σ(L) where σ(L)

is the savings problem defined as follows:

σ(L) = max
θ

∑
c∈ES

2

θc
kc

s.t. (5) – (6)

 (11)

As such, it can be observed that minimizing the number of vehicles is equivalent with
maximizing the savings over a vehicle schedule that only uses fixed circulations. In the
remainder of this section, we use this observation to give a proof of the NP-hardness of
the VCSP with κ = 2 and fl = 1 for all lines, and to develop an exact algorithm and an
16
15 -approximation algorithm.

4.1 NP-hardness
Our proof depends on the fact that we can construct an arbitrary circulation graph from the
line graph if it is accompanied by auxiliary restrictions on which 2-circulations are allowed,
which are not part of the formal input to the VCSP. This can be seen from the fact that
a star-shaped line graph translates to a complete circulation graph, since we can combine
all pairs of lines. If we can provide auxiliary restrictions on which combinations can be
combined into circulations and which not, we have complete control over the structure of the
circulation graph. In practice, such restrictions are realistic, since the possibility to combine
lines into circulations does not only depend on the lines having a shared terminal station,
but also on the precise layout of the infrastructure at the terminal station, and whether there
exists a type of rolling stock that is able to operate both lines.

ATMOS 2018

15:8 Vehicle Scheduling Based on a Line Plan

Figure 2 Transformation of a N3DM instance to a VCSP instance represented by a circulation
graph.

I Theorem 4. The vehicle circulation scheduling problem with κ = 2 and auxiliary restrictions
on which 2-circulations are allowed is NP-hard.

Proof. Our proof is based on a reduction from the NP-complete numerical 3-dimensional
matching problem [9] to an instance of the vehicle circulation scheduling problem expressed
by means of a circulation graph. Since each circulation graph can be generated based on a
line graph with auxiliary restrictions, this is sufficient to prove the theorem.

The inputs to the N3DM are three multisets of integers X,Y, Z, each containing k

elements, and a bound b. An N3DM instance is a YES-instance if there exist k disjoint
triples (x, y, z) such that x+ y + z = b holds for every triple.

We transform this to the following instance of the VCSP. For every element in X,Y and
Z we create three lines in L, all with kl = 2. The three lines can be combined in saving
circulations (kc = 3) such that they form a triangle. One of the three lines serves as the
connect line, the other lines are referred to as dummy lines. For every triple (x, y, z) that
sums up to b (all such triples can be found in polynomial time), a triple line is created with
kl = 1, which can be combined in non-saving circulations (kc = 3) with the connect-lines
corresponding to x, y and z. Letting µ denote the number of triples that sum up to b, the
resulting VCSP instance has 9k + µ lines. We call the generated instance a YES-instance, if
the number of required vehicles is at most 14k + µ, equivalent to a saving σ(L) of at least
4k. In Figure 2, we visualized this transformation for a small N3DM instance.

We claim that the constructed VCSP instance is a YES-instance if and only if the N3DM
instance is a YES-instance.

(if) Each disjoint triple (x, y, z) can be used to generate a saving of 4 by assigning 1
vehicle to each of the 3 circulations combining the triple line with the connect lines (green in
Figure 2, 1 vehicle to each of the 6 circulations combining the triples lines with the dummy
lines (blue) and 2 vehicles to each of the circulations combining dummy lines (red). In every
triangle, this gives a saving of 4

3 , so the total saving generated by every disjoint triple equals
4. As such, if there are k disjoint triples, the total saving is 4k and the VCSP instance is
indeed a YES-instance.

(only if) Since only the combined circulations in the triangle are saving, if the instance is a
YES-instance, every triangle must generate a saving of 4

3 . This implies that in every triangle,
the circulations combining the triple lines and dummy lines are assigned 1 vehicle (blue in
Figure 2) and the circulations combining dummy lines are assigned 2 vehicles (red). As a
consequence, for every connect line, one of the circulations connecting the line with a triple

R.N. van Lieshout and P. C. Bouman 15:9

line must be assigned 1 vehicle (otherwise the connect line would not be covered entirely).
Next, note that a triple line cannot be partially performed by combined circulations. Hence,
if one of the circulations combining a certain triple line and a connect-line is assigned a
vehicle, all three such circulations must be assigned a vehicle. So, as every connect line is
included in exactly one circulation with a triple line, and as every triple line is included in
either zero or three combined circulations, there must be k triple lines that are connected
with 3 connect lines. Clearly, the associated triples in the N3DM instance must be disjoint,
hence the N3DM instance must also be a YES-instance. J

4.2 The Strict Vehicle Circulation Scheduling Problem
We define the strict version of the VCSP to state that each circulation c is either not executed
at all, or executed by exactly kc vehicles. We will now show that the strict version with κ = 2
and all frequencies equal to 1 can be solved exactly using an approach based on matching.

As in the non strict version, we have the relation that the minimum number of vehicles
required under the strictness assumption, denoted as ν̄(L), equals

∑
l∈L kl − σ̄(L), where

σ̄(L) denotes the strict savings problem, obtained by replacing θc

kc
with the binary variable

γc in the regular savings problem σ(L):

σ̄(L) = max
γ

∑
c∈ES

2

γc (12)

s.t. γl +
∑

c∈E2|l∈c

γc = 1 ∀l ∈ L, (13)

γc ∈ {0, 1} ∀c ∈ E, (14)

Constraints 13 now state that a line is either operated with a fixed circulation, or using
one of the combined circulations. Since the objective does not contain the γc variables for
the fixed circulations anymore, the γ-variables for these circulations can be viewed as slack
variables for the Constraints 13. Furthermore, since the non-saving circulations have zero
contribution to the objective, there always exists an optimal solution that does not contain
any non-saving circulations. As a consequence, Constraints 13 can be rewritten as:∑

c∈ES
2 |l∈c

γc ≤ 1 ∀l ∈ L (15)

Since the circulations in ES2 contain precisely two lines, the resulting formulation is equivalent
to a matching problem where we have to maximize the number of selected saving circulations.
Thus, we can compute ν̄(L) by computing the maximum matching in the graph that only
contains the edges from ES2 .

I Theorem 5. The strict Vehicle Circulation Scheduling Problem with κ = 2, fl = 1 for
each line l ∈ L is solvable in polynomial time.

4.3 The Matching Approximation
Since the strict vehicle circulation scheduling problem provides solutions that are also
feasible for the regular problem, it can be applied as a heuristic. In this section we derive
an approximation guarantee for this heuristic. Our approximation results are based on
the observation that the savings problem is a maximization problem and that the linear
programming relaxations of the savings problem and its strict version, denoted as σLP(L)

ATMOS 2018

15:10 Vehicle Scheduling Based on a Line Plan

Figure 3 Circulation graph of the instance used to show that the bound of Theorem 6 is tight.

and σ̄LP(L) respectively, are equal. This easily follows from the fact that the strict version is
obtained from the non strict version by performing a linear variable substitution, which does
not influence the value of the linear relaxation.

I Theorem 6. For any line plan it holds that ν̄(L) − ν(L) ≤
⌊
|L|
6

⌋
. Furthermore, there

exists an instance that attains this bound.

Proof. Note that we can consider the difference between the savings instead of the difference
between the number of vehicles, as ν̄(L) − ν(L) =

∑
l∈L kl − σ̄(L) −

∑
l∈L kl + σ(L) =

σ(L)− σ̄(L). For any graph it holds that the difference between the value of the maximum
fractional matching and the value of the maximum matching is at most n

6 , with n the
number of nodes [7]. This implies that σ̄LP(L)− σ̄(L) ≤ |L|6 . Since the linear programming
relaxations of the savings problem and its strict version are equal, it follows that σ(L)−σ̄(L) ≤
σLP(L)− σ̄(L) = σ̄LP(L)− σ̄(L) ≤ |L|6 . Furthermore, the right hand side of this equation
can be rounded down since the difference between savings must be integral.

To show that this bound is tight, consider the circulation graph depicted in Figure 3.
The example contains 2k + 1 triangles, where k is a positive integer, and one central node
connected to all triangles. The circulations between the lines in the triangles are saving.
The value σ̄(L) is equal to the size of the maximum matching in the graph induced by all
saving circulations, i.e. the graph with only the 2k + 1 triangles. Since we can pick only
one circulation in every triangle, we have that σ̄(L) = 2k + 1. The optimal unrestricted
solution is as follows. We can assign 1 vehicle to all green circulations, k vehicles to all
blue circulations and k + 1 vehicles to all red circulations. The objective attained with this
solution equals σ(L) =

∑
c∈ES

2

θc

kc
= (2k + 1)(k+k+k+1

2k+1) = 3k + 1.
Comparing the two objectives, we have that σ(L) − σ̄(L) = k. As the bound equals⌊

|L|
6

⌋
=
⌊

3(2k+1)+1
6

⌋
=
⌊
k + 4

6
⌋

= k, this circulation graph attains the bound for every k.
J

I Lemma 7. If σ(L)− σ̄(L) = k, the circulation graph contains at least 2k + 1 disjoint odd
cycles of saving circulations.

Proof. Every vertex x of the fractional matching polytope is half-integral, i.e. xe ∈ {0, 1
2 , 1}

[2]. Moreover, the edges with xe = 1 form a matching and the set of edges with xe = 1
2

form a set of disjoint odd cycles. If the optimal solution to the fractional matching problem
contains ω such odd cycles, the difference between the size of the fractional matching and
the size of the matching equals ω

2 , as a fractional matching in a single odd cycle can improve

R.N. van Lieshout and P. C. Bouman 15:11

the objective only by 1
2 compared to an integer matching in the same cycle. As such, if

σ(L)− σ̄(L) = k, we certainly have that σ̄LP(L)− σ̄(L) ≥ k, implying that the circulation
graph contains at least 2k disjoint odd cycles of saving circulations.

We prove that the number of odd cycles of saving circulations should be one more than
2k by contradiction. As we have already established that the number of odd cycles is at least
2k, we assume that σ(L)− σ̄(L) = k while there are exactly 2k odd cycles. Note that an odd
cycle cannot contribute strictly more than 1

2 to the difference between σ(L) and σ̄(L), as this
violates the fact that fractional matching is the relaxation of the savings problem. Hence, it
must hold that every odd cycle contributes exactly 1

2 to the difference between savings.
However, we will now show that for the VCSP, every odd cycle can increase the difference

between σ(L) and σ̄(L) with strictly less than 1
2 . This is the case since it is not possible to

select all circulations in an odd cycle of saving circulations in the circulation graph with value
1
2 . To see this, note that if circulation c = {l,m} contributes 1

2 to the objective of the VCSP,
this implies that kc is even (e.g. kc = 4 and θc = 2). Furthermore, since kc = kl + km − 1
(the circulation is saving), it must hold that kl and km have a different parity (one of them
is odd, the other even). As such, if we do have an odd cycle in which every circulation is
selected with value 1/2, there must exists a 2-coloring of the vertices of the cycle. Since this
is clearly not possible for an odd cycle, we reach a contradiction. J

I Theorem 8. For any line plan it holds that ν̄(L)−ν(L)
ν(L) ≤ 1

15 . Furthermore, there exists an
instance where this bound is attained. This implies that ν̄(L) is a 16

15 -approximation algorithm
for the VCSP with κ = 2 and all frequencies 1.

Proof. First note that

max ν̄(L)− ν(L)
ν(L) = max σ(L)− σ̄(L)∑

l∈L kl − σ(L) . (16)

It follows from Lemma 7 that for a given value of ν̄(L) − ν(L) = k, the worst case ratio
must be attained by using 2k+1 cycles of 3 vertices (more or larger cycles only lead to larger
values in the denominator). Next to that, for a fixed numerator it is easily seen that the
denominator of the ratio is minimized by letting a single node connect all the cycles. This
implies that for a given value of ν̄(L)− ν(L) = k, the instance in Figure 3 gives the worst
case ration. Maximizing over k gives

max
k∈N

k

(2k + 1)(3k + 3) + k − (3k + 1) = 1
15 , (17)

with the maximum being attained at k = 1. J

4.4 An exact algorithm for bounded treewidth
In this section we consider how to solve the VCSP exactly with κ = 2 where the circulation
graph has a low treewidth. Treewidth is a graph property that was introduced by Robertson
and Seymour [13] that, informally, indicates how “similar to a tree” the graph is. Many
problems that are NP-hard on general graphs, such as independent and dominating set, are
solvable in polynomial time if the treewidth of the input graph is bounded by a constant.

Formally, the treewidth of a graph G is the smallest width for which there a exists
tree-decomposition of G with that width. A tree-decomposition of an undirected graph
G = (V,E) is a tree T , where each node n ∈ T is associated with a bag Xn ⊆ V and these
two properties hold: (1) the endpoints of each edge should occur simultaneously in at least

ATMOS 2018

15:12 Vehicle Scheduling Based on a Line Plan

one bag, i.e. for each edge {v, w} ∈ E there is a node n ∈ T such that both v ∈ Xn and
w ∈ Xn, and (2) for each vertex v ∈ V , all nodes n for which the associated bag contains v,
i.e. v ∈ Xn, are a connected subtree of T . The width of a tree decomposition T is equal
to maxn∈T |Xn| − 1. Although finding a tree-decomposition of the treewidth of a graph is
NP-hard, there is a linear time algorithm [3] for any fixed width. Furthermore, there are
algorithms that are able to efficiently find good tree decompositions in practice, e.g. [16].

One versatile approach in the design of algorithms that exploit bounded treewidth is
to perform dynamic programming on the tree-decomposition. Central to this idea is the
interpretation of every bag Xn in the tree-decomposition as a graph separator, which means
that if we remove the nodes in the bag from the graph, the graph splits up in different parts.
By moving up the the tree of the tree-decomposition, the algorithm looks at the current bag
of vertices of the graph, which separates the part of the graph that is already processed by
the algorithm from the part still needs to be processed, with the invariant that all connections
between the processed and unprocessed parts of the graph must go through the current bag.
In each state of the algorithm a state table is constructed for (combinations of) vertices in
the bag associated with the current node in the tree, under the assumption that optimal
decisions were made for the processed part of the graph.

A helpful way to design a dynamic programming algorithm based on the tree-decomposition
is to assume it is a nice tree-decomposition [4]. Such a tree-decomposition has a root and
as a consequence the order in which the dynamic programming algorithm visits the nodes
of the tree is fixed: we start at the leaves and moves up to the root. In our description of
the algorithm, we say that the algorithm moves from parent nodes to child nodes. A nice
tree-decomposition distinguishes four types of nodes: create nodes which corresponds to
leaves in the tree that only have a single vertex in their bag, introduce nodes which introduce
a single new vertex into the bag of their parent, forget nodes which remove a single vertex
from the bag of their parents and join nodes which have the same bag as their two parents.
Thus in a nice tree-decomposition join nodes have two parents, leaf nodes have no parents and
the other nodes have a single parent. There exists a linear time algorithm that converts any
tree-decomposition into a nice tree-decomposition with O(|V |) nodes and the same width [4].

Our algorithm adopts this approach. For each bag a state table is constructed for all
partial covers of the lines in the current bag, based on the possible combinations of values
of the left hand sides of Constraints 5. In every step we are only allowed to increase the θc
values and thus the coverage of each line. Since each circulation c ∈ E can only be selected
an integer number of times, there is a finite number of fractions

∑
c∈δ(l)

θc

kc
that lie in the

range [0, 1] for each line l. The total number of combinations of values of the left hand sides
of Constraints 5 for a particular set of lines is at most the product of the possible number
of values for the individual constraints. This gives us an upper bound on the number of
states we need to maintain in a state table when we enumerate the optimal partial covers
for that bag. An upper bound on the number of possible fractional values for the left hand
side of the constraint of a line l is denoted by ρl. One (crude) upper bound for this can be
computed as 1 +

∏
c∈δ(l) kc. Note that if the circulations are short enough compared to T ,

which they often are in practice, this number will typically be small.
A single state in the state table for a bag Xn assigns a fraction ql to each line l ∈ Xn

where we have ql ∈ {0, 1
ρl
, . . . , ρl−1

ρl
, 1}. The state table for a node n ∈ T maps each state

to the minimum number of vehicles required to reach this state. If the algorithm generates
the same state multiple times, it is sufficient to store only the state for which the minimum
number of vehicles was required to reach the state. If we introduce ρ as the maximum ρl for
all lines l ∈ L, the size of the table is for a single bag is O(ρw+1).

R.N. van Lieshout and P. C. Bouman 15:13

To conclude the description of the algorithm, we describe how the state table for each
of the four types of nodes in the tree-decomposition can be computed based on the state
tables of the parent(s). In a start node, only a single line l is introduced and thus only a
fixed circulation is considered, modeled by a self loop. This loop can be used at most ρl
times and may not be used at all. These state tables can be generated in O(ρ) time. In
an introduce node, a new line l is introduced to the state table of the parent. Due to this
introduction, we have to expand all states in the parent table with all possible multiplicities
of the circulations in δ(l), including multiplicities of zero. As the state table of the parent
contains O(ρw) states and there are O(w) circulations that connect the new line l to lines
in the current bag, each of which can be used at most ρ times in the expansion, we can
construct the state table for an introduce node in O(w · ρw+1) time. In a forget node, a line
l is removed from the state table of parent. This means that from this step onward, that
particular line is in the set of lines that have been processed by the algorithm and thus we
must make sure that it is fully covered. This can be achieved by removing all states from
the parent table where the ql of this line is not equal to 1, as the removal of line l implies
that these states are infeasible. This can be done in O(ρw+1) time as we only have to filter
the state table of the parent. Finally, in a join node we have two parent nodes with the
same bag, but potentially different states. We construct the new state table by either taking
the state and its associated number of vehicles from one of the two parents’ state table or
by taking a state from one table and combining it with a state from the second table, by
adding up the ql’s of both states and adding up the number of vehicles of the two states.
These combinations are only worth considering if none of the resulting ql’s exceeds 1. As
both parent tables can be of size ρw+1, there are ρ2w+2’ combinations that can be explored
in this step. This means the table for a join node can be computed in O(ρ2w+2) time.

When the algorithm is done, we can find the optimal solution to the VCSP in the root
node at the state where all ql’s are equal to one. Recall that the size of the tree-decomposition
is O(|L|) and each node in this decomposition can be processed in O(ρ2w+2) time.

I Theorem 9. The VCSP with κ = 2 and auxiliary constraints on the allowed circulations
can be solved in O(nρ2w+2) time where n = |L|, w is the tree-width of the circulation graph
and ρ = maxl∈L

∏
x∈{kc|c∈δ(l)} x.

5 Conclusions and further research

We have shown that the Vehicle Circulation Scheduling Problem is NP-hard for any finite
restriction on the number of lines that can be included in a circulation (κ) greater than
two. For the κ = 2 case we need to make the (realistic) additional assumption that we have
auxiliary restrictions on which lines can be combined in order to prove NP-hardness. For
the κ = 2 case we show that if we can cover each line by at most one unique circulation, a
matching algorithm yields the optimal solution. This solution provides a 16

15 -approximation
in case multiple circulations can be used. We also provide an exact algorithm that can
exploit low treewidth of the circulation graph, and a low number of vehicles required per
circulation. For future research, it makes sense to combine these algorithms with the line
planning process to see if it can help to make line plans that allow better vehicle schedules.
Furthermore, it is interesting to consider whether algorithms exist that are useful for cases
where κ is small, but greater than two. Finally, it is still an open question whether the κ = 2
case without auxiliary restrictions is NP-hard.

ATMOS 2018

15:14 Vehicle Scheduling Based on a Line Plan

References
1 Erwin JW Abbink, Luis Albino, Twan Dollevoet, Dennis Huisman, Jorge Roussado, and

Ricardo L Saldanha. Solving large scale crew scheduling problems in practice. Public
Transport, 3(2):149–164, 2011.

2 Michel Louis Balinski. Integer programming: methods, uses, computations. Management
science, 12(3):253–313, 1965.

3 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

4 Hans L Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

5 Ralf Borndörfer, Martin Grötschel, and Marc E Pfetsch. A column-generation approach to
line planning in public transport. Transportation Science, 41(1):123–132, 2007.

6 Gabrio Caimi, Leo Kroon, and Christian Liebchen. Models for railway timetable optimiza-
tion: Applicability and applications in practice. Journal of Rail Transport Planning &
Management, 6(4):285–312, 2017.

7 Ilkyoo Choi, Jaehoon Kim, and O Suil. The difference and ratio of the fractional matching
number and the matching number of graphs. Discrete Mathematics, 339(4):1382–1386,
2016.

8 Pieter-Jan Fioole, Leo Kroon, Gábor Maróti, and Alexander Schrijver. A rolling stock
circulation model for combining and splitting of passenger trains. European Journal of
Operational Research, 174(2):1281–1297, 2006.

9 Michael R Garey and David S Johnson. Computers and intractability. a guide to the theory
of NP-completeness. a series of books in the mathematical sciences, 1979.

10 Omar J Ibarra-Rojas, Fernando López-Irarragorri, and Yasmin A Rios-Solis. Multiperiod
bus timetabling. Transportation Science, 50(3):805–822, 2015.

11 Natalia Kliewer, Bastian Amberg, and Boris Amberg. Multiple depot vehicle and crew
scheduling with time windows for scheduled trips. Public Transport, 3(3):213–244, 2012.

12 Julius Pätzold, Alexander Schiewe, Philine Schiewe, and Anita Schöbel. Look-ahead ap-
proaches for integrated planning in public transportation. In OASIcs-OpenAccess Series in
Informatics, volume 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

13 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

14 Anita Schöbel. Line planning in public transportation: models and methods. OR spectrum,
34(3):491–510, 2012.

15 Anita Schöbel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling
in public transportation. Transportation Research Part C: Emerging Technologies, 74:348–
365, 2017.

16 Hisao Tamaki. Positive-Instance Driven Dynamic Programming for Treewidth. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms
(ESA 2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 68:1–68:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7880, doi:10.4230/
LIPIcs.ESA.2017.68.

http://drops.dagstuhl.de/opus/volltexte/2017/7880
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68

	Introduction
	Problem Formulation
	Computational Complexity
	Fixed and Combined Circulations
	NP-hardness
	The Strict Vehicle Circulation Scheduling Problem
	The Matching Approximation
	An exact algorithm for bounded treewidth

	Conclusions and further research

