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Abstract
We consider the following planning problem in public transportation: Given a periodic timetable,
how many vehicles are required to operate it?

In [9], for this sequential approach, it is proposed to first expand the periodic timetable over
time, and then answer the above question by solving a flow-based aperiodic optimization problem.

In this contribution we propose to keep the compact periodic representation of the timetable
and simply solve a particular perfect matching problem. For practical networks, it is very much
likely that the matching problem decomposes into several connected components. Our key obser-
vation is that there is no need to change any turnaround decision for the vehicles of a line during
the day, as long as the timetable stays exactly the same.
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1 Introduction

During the last decades, public transport has become one of the classic fields for applied
mathematical optimization [1]. Typically, the planning process is subdivided into line
planning, timetabling, vehicle scheduling etc. Timetabling, in particular computing a periodic
timetable for instance for bus networks, is still attracting several teams of researchers [2, 4,
5, 10].

The design of public transportation services is pursuing several objectives, of course. One
is operating efficiency, where a key performance indicator is the number of vehicles that are
required for operation.

In this paper, we restrain ourselves to the classical sequential approach of planning. In
particular, having fixed the line plan as well as the timetable, the next task is to compute a

1 This research was carried out in the framework of Matheon supported by Einstein Foundation Berlin.
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16:2 The Number of Vehicles to Operate a Periodic Timetable

vehicle schedule, in particular defining the number of vehicles required to operate the given
timetable. This is essentially what in [9] is denoted “the traditional approach”.

In more detail, we are considering the following setting, right as in [9]:
We restrict ourselves to periodic timetables, where we denote the common period time of
all lines as T .
For a given line plan and periodic timetable, we want to compute the number of required
vehicles, i.e., evaluate a so-called LTS-plan, according to [9].

We agree that in general a vehicle schedule is aperiodic. Hence, it makes most sense for
software providers such as IVU or GIRO to develop and promote highly specialized algorithms
on a commercial basis.

Yet, in our paper we show that the aperiodicity of optimum vehicle schedules is just a
result of aperiodic timetables. In practice, this may be due to extra peak-hour trips and/or
shorter trip durations during night hours. In contrast, as long as the underlying timetable is
fully periodic, we prove that one can always find a vehicle schedule with a minimal number
of vehicles, even when restricting the vehicle schedule to perform the very same turnaround
activities of the vehicles over the entire day. In a sense, this turns out to be a consequence
of the structure of bipartite matching polytopes. So, to compute the number of vehicles
that are required to operate a given periodic timetable, in contrast to the procedure that is
reported in [9], actually there is no need to expand (or, roll out) the periodic timetable for
the number N of periods that are needed to cover a whole planning horizon (e.g., a day),
and then perform a full vehicle schedule optimization from scratch, e.g., using a flow-based
model. Rather, staying with the much more compact periodic representation turns out
to be absolutely sufficient. Although we are aware that in several earlier contributions,
minimization of operating cost had been done pretty much in this way (e.g. [6, 8]), we were
not able to detect any justification in those papers that was equivalent to the one we are
proposing here.

Notice that with respect to practice, this result is not only relevant, if a timetable stays
the same over the entire day. Rather, if the peak in the number of vehicles was not induced
by some single trips without any periodically recurring “copies”, and if the trip lengths of
the lines are relatively small (e.g., at most two hours) compared to the duration of the peak
traffic time for which the periodic timetable is valid (say from 2 p.m. until 7 p.m.), already
then our result applies.

The paper is organized as follows: At first, we shortly recall the setting of periodic
timetabling. Second, we consider the task of periodic vehicle scheduling for a given fixed
periodic timetable. Our goal is to prove in Theorem 12 that there is no advantage to compute
the minimum number of vehicles on an expanded aperiodic network (as it is necessary for
general vehicle scheduling), given that the underlying timetable is 100% periodic. To build
the bridge from the periodic model to the expanded aperiodic model, we consider an expanded
(or rolled-out) periodic version as an intermediate step, serving as a theoretical benchmark.
Let us emphasize that the attribute “simple” in the title of this paper refers to the result
itself rather than to the contents of its proof.

2 Periodic Timetabling

The basis for our timetabling model is the periodic event scheduling problem (PESP) from
[12]. Since we are focusing on computing the number of vehicles that are required to operate
a periodic timetable, we are only considering activities that are associated with vehicles. The
main player is an event-activity network N = (G,T, `), where G is a directed graph with
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Figure 1 Example event-activity network (T = 10) with a periodic timetable

node set V and arc set A satisfying the following properties:
Each node v ∈ V is either a departure node or an arrival node, so that the set of nodes of
G decomposes as V = Vdep

.
∪ Varr.

The set A of arcs is the disjoint union of a set Ad ⊆ Vdep × Varr of driving arcs and a set
At ⊆ Varr × Vdep of turnaround arcs. In particular, G is a bipartite graph.
Each departure node has exactly one outgoing arc, and arrival nodes have exactly one
ingoing arc, i.e., their respective driving arcs.

The event-activity network comes with a period time T ∈ N. Moreover, we consider for each
arc a = (v, w) ∈ A its time duration `a ∈ [0,∞). For a driving arc vw ∈ Ad, the quantity `vw
denotes the time required to travel along vw. Similarly, if vw ∈ At is a turnaround arc, then
`vw measures the waiting time from the arrival at v until the departure at w. We assume
that `vw > 0 holds for driving arcs, later we will even motivate `vw ∈ (0, T ].

A periodic timetable for an event-activity network N = (G,T, `) is a vector π ∈ [0, T )V
such that

πw − πv ≡ `vw mod T for all vw ∈ A.

In the case of technical minimum turnaround times (e.g., 3 min for subways), for a network
with T = 10 an arrival at πv = 5 and departure at πw = 6 could yield a value `vw = 11,
because the train that arrives at minute five is not ready for departure at minute six, and
thus has to wait until the next departure ten minutes later. This value is larger than the
period time and does not equal the positive immediate difference

πw − πv = 1 6= 11 = `vw > T = 10.

We therefore define the periodic offset of an arc vw ∈ A as

pvw := `vw − (πw − πv)
T

∈ Z≥0. (1)

An example of an event-activity network with a periodic timetable is given in Figure 1.
Notice that compared to periodic timetabling, where an optimal timetable is sought, here we
are using a kind of simplified notation. Since in the setting that we are investigating the
timetable is the input, and thus fixed, there is no need to elaborate on any minimum time
durations serving as timetabling constraints. In fact, our values `vw are just the well-known
periodic tensions [7].

ATMOS 2018



16:4 The Number of Vehicles to Operate a Periodic Timetable

3 Periodic Vehicle Scheduling

Let N = (G,T, `) be an event-activity network with a periodic timetable π. What is the
minimal number of vehicles required to operate the timetable?

To answer this question, we define a periodic vehicle schedule as a collection S of directed
cycles in G such that each driving arc a ∈ Ad is contained in exactly one cycle in S. Moreover,
we define the length resp. periodic offset of a directed cycle γ in G as

`(γ) :=
∑
a∈γ

`a resp. p(γ) :=
∑
a∈γ

pa.

I Lemma 1. Let N be an event-activity network and let γ = (v1, . . . , vk, v1) be a directed
cycle in G. If N admits a periodic timetable π, then `(γ) = p(γ) · T is a positive integer
multiple of T .

Proof. By definition of π and p,

`(γ) =
∑
a∈γ

`a = `v1v2 + · · ·+ `vk−1vk
+ `vkv1

= πv2 − πv1 + · · ·+ πvk
− πvn−1 + πv1 − πvk

+ Tpv1v2 + · · ·+ Tpvkv1

= T ·
∑
a∈γ

pa

= T · p(γ). J

In fact, this is a special case of the well-known cycle periodicity constraints in periodic
timetabling [7]. This means that a vehicle driving on a cycle γ of a periodic vehicle schedule
S can periodically continue after a time of `(γ). Since each driving arc has to be covered in
every period, the cycle γ requires in total `(γ)/T = p(γ) vehicles. The number of vehicles
n(S) associated to a periodic vehicle schedule S is thus

n(S) := 1
T

∑
γ∈S

`(γ) = 1
T

∑
γ∈S

∑
a∈γ

`a =
∑
γ∈S

∑
a∈A

pa =
∑
γ∈S

p(γ).

In other words, in any periodic schedule S we can obtain the number of required vehicles
either by summing up all cycle lengths and dividing by the period time, or by counting for
each cycle the “jumps” to the next period. Notice already, that later we will translate this
optimal compact periodic solution to optimal solutions for both, the expanded aperiodic
vehicle scheduling problem as well as the expanded periodic model as an intermediate step.

The goal is now to compute a periodic vehicle schedule S such that n(S) is minimal.
We call this the minimal periodic vehicle schedule problem. This problem has an easy
reformulation as a minimum cost circulation problem, where the variables xa indicate
whether the arc a is used in the optimal vehicle schedule:

Minimize
∑
a∈A

paxa

s.t.
∑

u:uv∈A
xuv =

∑
w: vw∈A

xvw, v ∈ V,

xa = 1, a ∈ Ad,
xa ∈ {0, 1}, a ∈ At.

(2)
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I Lemma 2. The integer program (2) solves the minimal periodic vehicle schedule problem.

Proof. This follows directly from plugging in the definitions of periodic vehicle schedules
and their minimal number of vehicles into the standard integer programming formulation for
minimum cost circulations. J

A closer inspection of the IP (2) yields the following: Since all driving arcs are covered
exactly once, their cost is fixed in the objective. As every driving arc a ∈ Ad requires at least⌊
`a

T

⌋
vehicles, we may assume w.l.o.g. that for any driving arc a ∈ Ad holds `a ∈ [0, T ), which

by (1) implies pa ∈ {0, 1}. In turn, we remember to add
⌊
`a

T

⌋
vehicles for each shortened

driving arc a. Furthermore, as any departure (arrival) node has only one outgoing (ingoing)
arc, which is a driving arc, the flow conservation conditions may be replaced by∑

u:uv∈At

xuv = 1, v ∈ Vdep,∑
w: vw∈At

xvw = 1, v ∈ Varr.

In the end, we arrive at the following minimum weight perfect matching problem:

Minimize
∑
a∈At

paxa +
∑
a∈Ad

pa

s.t.
∑

a∈At: v∈a
xa = 1, v ∈ V,

xa ∈ {0, 1}, a ∈ At.

(3)

In other words, we have established the following:

I Lemma 3. Let N = (G,T, `) be an event-activity network with periodic timetable π. Let
Gt = (V,At) be the subgraph of G where all driving arcs are removed. There is a one-to-one
correspondence

{perfect matchings in Gt} ↔
{

circulations in G covering
all driving arcs exactly once

}
.

Moreover, a minimum weight perfect matching w.r.t. ` (or p) in Gt corresponds to a minimum
cost circulation w.r.t. ` (or p) in G.

Note that the matching formulation is of rather local nature: It suffices to compute a perfect
matching for every weakly connected component of Gt. Since the turnaround arcs usually
stem from turnarounds at certain stations, this means that we can compute a minimal
periodic vehicle schedule by optimizing the transitions at every station. Of course, several
stations might be connected by longer unloaded trips.

The following theorem summarizes the different ways to solve the minimal periodic vehicle
schedule problem:

I Theorem 4. For an event-activity network N = (G,T, `) with periodic timetable π, the
number n(Smin) of vehicles of a minimal periodic vehicle schedule is given by:
(a) The cost of a minimum cost circulation in G w.r.t. ` covering all driving arcs exactly

once, divided by T .
(b) The sum of periodic offsets of the arcs occurring in a minimum cost circulation in G

w.r.t. ` covering all driving arcs exactly once.

ATMOS 2018



16:6 The Number of Vehicles to Operate a Periodic Timetable

(c) The sum of the weights `a of a minimum weight perfect matching of the turnaround arcs
in G w.r.t. ` plus the travel times of all driving arcs, divided by T .

(d) The sum of periodic offsets pa occurring in a minimum weight perfect matching of the
turnaround arcs in G w.r.t. ` plus the periodic offsets of all driving arcs.

4 Periodic Expansion

In this section, we describe a procedure to expand an event-activity network in a periodic way.
This construction will be of use for the proof of our main result Theorem 12, the optimality
proof for a periodic vehicle scheduling solution in an expanded aperiodic context.

At first, we define for any x ∈ R and N ∈ N the expression [x]N as the unique real
number y ∈ [0, N) with x ≡ y mod N . For example, [−8]10 = 2.

Let N = (G,T, `) be an event-activity network with periodic timetable π. For any positive
integer N , we define another event-activity network, namely the N-th periodic expansion
N (N) = (G(N), T (N), `(N)) as follows:

The node set of G(N) is V (N) := V ×{0, 1, . . . , N − 1}. A node (v, i) is called a departure
(arrival) node iff v is a departure (arrival) node.
For each driving arc vw ∈ Ad, add to the arc set A(N) of G(N) the driving arcs

((v, i), (w, [i+ pvw]N )), i = 0, . . . , N − 1.

For each turnaround arc vw ∈ At, add to A(N) turnaround arcs

((v, i), (w, j)), i, j = 0, . . . , N − 1.

The duration of an arc ((v, i), (w, j)) ∈ A(N) is set to

`
(N)
(v,i),(w,j) := `vw + [j − i− pvw]N · T.

T (N) := N · T .

I Remark. Some observations:
(a) Up to notation, N (1) is the same as N .
(b) Each driving arc in N has N copies in N (N), whereas each turnaround arc has N2

copies. In fact, take a periodic turnaround arc vw ∈ At. For each of the N expanded
occurrences of its periodic arrival event v, we keep the possibility to continue on any
of the N copies of the respective expanded departure event w. At first sight, it could
appear that some of these expanded arcs point backward in time. Yet, since N (N) is
still a periodic model, these arcs have positive durations, too, when considering their
actual endpoints one period N · T later.

(c) Let vw be an arc in N . Then the value of `(N) of any arc ((v, i), (w, j)) is at least `vw,
and the arcs ((v, i), (v, [i + pvw]N )) for i = 0, . . . , N − 1 are precisely the arcs whose
duration is exactly `vw.

Periodic timetables extend in a natural way to the N -th periodic expansion:

I Lemma 5. Let π be a periodic timetable for N . Define π(N) ∈ [0, N · T )V (N) via

π
(N)
(v,i) := πv + i · T, (v, i) ∈ V (N).

Then π(N) is a periodic timetable for N (N) for the periodic tension values `(N)
(v,i),(w,j).
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Proof. Let ((v, i), (w, j)) ∈ A(N). We need to show that π(N)
(w,j) − π

(N)
(v,i) − `

(N)
(v,i),(w,j) is an

integer multiple of N · T . Plugging in the definitions,

π
(N)
(w,j) − π

(N)
(v,i) − `

(N)
(v,i),(w,j) = πw + j · T − πv − i · T − `vw − [j − i− pvw]N · T

= (j − i− pvw) · T − [j − i− pvw]N · T
≡ 0 mod N · T,

as i, j, pvw are all integers and π is a periodic timetable for N . J

In the remainder of this section, we establish that n(Smin) = n(S(N)
min ), where Smin denotes

a minimal vehicle schedule for N , S(N)
min a minimal vehicle schedule for the N -th periodic

expansion N (N) of N , and n(·) the number of vehicles of the respective schedules. We first
prove that n(S(N)

min) ≤ n(Smin).

I Lemma 6. Let N be an event-activity network with a periodic timetable π and a periodic
vehicle schedule S using n(S) vehicles. For any positive integer N , the timetable π(N) on
N (N) can be operated with n(S) vehicles.

Proof. Let M be a perfect matching of the turnaround arcs in G, resulting in a periodic
vehicle schedule S using n(S) vehicles. Then

M (N) := {((v, i), (w, [i+ pvw]N ) | vw ∈M, i = 0, . . . , N − 1}

is a perfect matching of the turnaround arcs in G(N). By the previous remark, the arcs of
M (N) have the same turnaround time as their counterpart in M . Moreover, every driving
arc in G has N copies with the same travel time in G(N). By Theorem 4, M (N) leads hence
to a periodic vehicle schedule whose number of vehicles is

1
N · T

 ∑
a∈M(N)

`(N)
a +

∑
a∈A(N)

d

`(N)
a

 = 1
N · T

(
N ·

∑
a∈M

`a +N ·
∑
a∈Ad

`a

)
= n(S). J

I Theorem 7. Let N be an event-activity network with a periodic timetable π. For any
positive integer N , the number of vehicles of a minimal periodic vehicle schedule w.r.t. π(N)

on N (N) equals the number of vehicles of a minimal periodic vehicle schedule w.r.t. π on N .

Proof. By Lemma 6, here it remains to show that n(Smin) ≤ n(S(N)
min), where S(N)min

denotes a minimal periodic vehicle schedule w.r.t. π on N (N), and Smin for the initial
unexpanded periodic network N . By Theorem 4, S(N)

min induces a perfect matching M (N) of
the turnaround arcs, with corresponding binary variables x(N)

a for a ∈ A(N)
t set to 1 in the

integer programming formulation (3).
We define a – possibly fractional – periodic vehicle schedule Sfrac w.r.t. π on N as follows:

For each turnaround arc vw ∈ At, set the value of its matching variable xvw as

xvw := 1
N
·
N−1∑
i,j=0

x
(N)
(v,i),(w,j) (4)

By the definition of A(N) and by the matching property of M (N), Sfrac indeed constitutes
a – possibly fractional – periodic vehicle schedule w.r.t. π on N , i.e., a fractional perfect
matching in the bipartite graph of the turnaround arcs At of G. By Remark 4, the travel

ATMOS 2018



16:8 The Number of Vehicles to Operate a Periodic Timetable

time along any arc used by Sfrac is at most the travel time of any of its counterparts in S(N)
min .

This implies that the total cost of Sfrac is at most n(S(N)
min):

n(Sfrac) = 1
T

( ∑
vw∈Ad

`vw +
∑
vw∈At

xa`vw

)

(4)= 1
T

 ∑
vw∈Ad

1
N

N−1∑
i=0

`vw +
∑
vw∈At

1
N

N−1∑
i,j=0

x
(N)
(v,i),(w,j)`vw


≤ 1
T

 1
N

∑
vw∈Ad

N−1∑
i=0

`
(N)
(v,i),(v,[i+pvw]N ) + 1

N

∑
vw∈At

N−1∑
i,j=0

x
(N)
(v,i),(w,j)`

(N)
(v,i)(w,j)


= n(S(N)

min).

Recall several elementary results as they are collected, e.g., in the book of Schrijver [11]:
As the subgraph (V,At) of G is bipartite, the constraints xa ≥ 0 and

∑
a∈δ(v) xa = 1 (i.e.,

the incidence matrix) already determine the perfect matching polytope [11, Theorem 18.1].
The incidence matrix of any directed graph is totally unimodular [11, Theorem 13.9].
For a totally unimodular matrix together with an integer right-hand-side vector, their
associated polyhedron is integer [11, Theorem 5.20].

Now, due to the integrality of the perfect matching polytope (i.e., the assignment problem
polytope), we find an optimal integral perfect matching M in the bipartite graph of the
turnaround arcs At. This induces a minimal periodic vehicle schedule Smin w.r.t. π on N .
Since Sfrac is a fractional solution of this perfect matching polytope, we finally find

n(Smin) ≤ n(Sfrac) ≤ n(S(N)
min).

Since Lemma 6 asserts n(S(N)
min) ≤ n(Smin), this finishes the proof. J

5 Aperiodic Vehicle Scheduling

The standard way to compute the minimal number of vehicles required to operate a – not
necessarily periodic – timetable is to use a network flow model [3, Â§2.4]. For a periodic
timetable, the first step is to expand (or roll out) the timetable for a sufficient amount of
time, e.g., a day.

We formalize this process as follows: Starting from an event-activity network N with
periodic timetable π, we construct the N-th aperiodic expansion N [N ] = (G[N ], T [N ], `[N ])
with node set V [N ] and arc set A[N ] according to the following rules, see also Figure 2:

Initialize N [N ] as the N -th periodic expansion N (N).
Delete all arcs ((v, i), (w, j)) with p(N)

(v,i),(w,j) ≥ 1, i.e., those that leave the periodically
expanded graph at time N · T and re-enter it at time zero.
Remove departure nodes with out-degree zero and arrival nodes with in-degree zero,
together with any incident turnaround arcs.
Add a super-source s and arcs from s to all remaining departure nodes (v, i) with length
`

[N ]
s,(v,i) = π

(N)
(v,i).

Introduce a super-sink t. Add arcs from all remaining arrival nodes (w, j) to t with
`

[N ]
(w,j),t = N · T − π(N)

(w,j).

Finally make an extra arc (t, s) with `[N ]
ts = 0.
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Figure 2 The first N = 3 layers of the periodic expansion with selected turnaround activities of
the event-activity network in Figure 1 on the left, and its aperiodic counterpart on the right

Deleting arcs with positive periodic offset p(N) means intuitively that all arcs ((v, i), (w, j))
with πv + i · T > πw + j · T (“backward in time”) are omitted, as well as arcs whose duration
`

(N)
(v,i),(w,j) is at least N · T (“jump to the next period”). If we delete a driving arc, then we
also remove the corresponding departure and arrival nodes. The arc (t, s) is the only arc
in the aperiodic expansion that is allowed to go “backward in time”. Moreover, think of
the deletion of a turnaround arc ((w, j), (v, i)) as a kind of replacing it with the new pull-in
arc ((w, j), t) together with the new pull-out arc (s, (v, i)).
I Remark. (a) Every arc of the form ((v, i), (w, j)) ∈ A[N ] satisfies p(N)

(v,i),(w,j) = 0 and hence
`

(N)
(v,i),(w,j) = π

(N)
(w,j) − π

(N)
(v,i) ∈ [0, N · T ).

(b) Suppose that γ is a directed cycle in N [N ] containing an arc of positive duration. Then
γ contains also the arc from t to s, as π(N) increases along γ and the arc (t, s) is the
only way to decrease π(N) again.

Define the sets of driving and turnaround arcs of N [N ] as A[N ]
d := A

(N)
d ∩ A[N ] and

A
[N ]
t := A

(N)
t ∩ A[N ], respectively. An aperiodic vehicle schedule is a collection S[N ] of

directed cycles in N [N ] such that each driving arc is contained in exactly one cycle of S[N ].

ATMOS 2018



16:10 The Number of Vehicles to Operate a Periodic Timetable

By the previous remark, a vehicle starts at s, visits departure nodes and arrival nodes
alternatingly until it reaches t, and finally goes back to s. The minimum number of vehicles
n(S[N ]) of an aperiodic vehicle schedule S[N ] is thus obtained by solving the following
minimum cost circulation problem, see [3, Â§2.4]:

Minimize xts

s. t.
∑

u:uv∈A[N]

xuv =
∑

w: vw∈A[N]

xvw, v ∈ V,

xa = 1, a ∈ A[N ]
d ,

xa ∈ Z≥0 a ∈ A[N ] \A[N ]
d .

(5)

The minimal aperiodic vehicle schedule problem is to solve the above integer program, still
for a given fixed timetable.

I Lemma 8. Let S[N ] be a minimal aperiodic vehicle schedule corresponding to an optimal
solution x to the integer program (5). Then the following numbers are equal:
(a) n(S[N ]),

(b)
1

N · T
∑

a∈A[N]

`[N ]
a xa,

(c) #A[N ]
d −#{a ∈ A[N ]

t | xa = 1},
(d) #A[N ]

d −#M , where M is a maximum cardinality matching of (V [N ], A
[N ]
t ),

(e)
∑
a=(s,v) xa =

∑
a=(w,t) xa.

Proof. If a feasible circulation x for (5) produces f units of flow on the t-s-arc, then it
also contains f arc-disjoint paths from s to t. Let q = (s, (v1, i1), . . . , (vk, ik), t) be such an
s-t-path. Then

`[N ](q) = `
[N ]
s,(v1,i1) +

k−1∑
j=1

`
[N ]
(vj ,ij),(vj+1,ij+1) + `

[N ]
(vk,ik),t

= π
(N)
(v1,i1) +

k−1∑
j=1

(
π

(N)
(vj+1,ij+1) − π

(N)
(vj ,ij)

)
+N · T − π(N)

(vk,ik) = N · T,

by the definition of N [N ]. In particular,
∑
a∈A[N] `

[N ]
a xa = f ·N · T . This shows (a) = (b).

Each simple cycle in a feasible circulation uses the arc from t to s, proceeds to a departure
node, and then visits driving and turnaround activities alternatingly until it reaches its last
driving activity, from which it goes back to t. In particular, for each such cycle γ holds

#{a ∈ A[N ]
d | a ∈ γ} −#{a ∈ A[N ]

t | a ∈ γ} = 1.

A minimum cost circulation decomposes into precisely n(S[N ]) such cycles, and covers each
arc of A[N ]

d precisely once. Summing over these cycles, we obtain (a) = (c).
Observe that {a ∈ A[N ]

t | xa = 1} is a matching of (V [N ], A
[N ]
t ). Conversely, let M be

any matching in (V [N ], A
[N ]
t ). Consider the circulation consisting of the #A[N ]

d simple cycles
(s, (v, i), (w, j), t, s) for each driving arc ((v, i), (w, j)) ∈ A[N ]

d . For each a ∈M , connect the
cycles of the driving arcs incident to a, thereby reducing the value of flow by one. This yields
a circulation with value #A[N ]

d −#M .
Finally, (a) = (e) follows immediately from the structure of N [N ] and (5). J
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I Remark. After N [N ] has been constructed, the number n(S[N ]) does neither depend on `
nor π. In other words, it is sufficient to look at feasible sequences of trips regardless of their
actual duration.

Now, let’s have a look at the cuts that are induced along the timelines (i+ 1)T − ε:

I Lemma 9. Let S[N ] be an aperiodic vehicle schedule with associated matching M [N ] of
(V [N ], A

[N ]
t ). Then for any i ∈ {0, . . . , N − 2},

n(S[N ]) ≥
∑
a∈Ad

pa + #{((v, i), (w, i+ 1)) ∈M [N ]}.

Proof. Let x be the corresponding solution to the IP (5). For small ε > 0, examine the flow
x on all arcs at time (i+ 1)T − ε: At this point, there is one unit of flow on each driving
arc departing before (i + 1)T and arriving at (i + 1)T or later. This means, there are pa
units of flow for each driving arc a ∈ Ad in N . Moreover, there is one unit of flow on each
turnaround arc matched by M [N ] with arrival before (i+ 1)T and departure at (i+ 1)T or
later. In particular, this comprises turnaround arcs starting at some (v, i) and ending at
some (w, i+ 1). Finally, there is a non-negative flow on pull-in or pull-out arcs. J

We turn now to the comparison of periodic and aperiodic expansions:

I Lemma 10. Let N be an event-activity network with periodic timetable π. Let S[N ]min be
a minimal aperiodic vehicle schedule on N [N ], and let S(N) be any periodic vehicle schedule
on N (N). Then n(S[N ]

min) ≤ n(S(N)).

Proof. LetM (N) be a perfect matching of the turnaround arcs in the N -th periodic expansion.
By Theorem 4,

n(S(N)) =
∑

a∈A(N)
d

p(N)
a +

∑
a∈M(N)

p(N)
a

≥ #{a ∈ A(N)
d | p(N)

a ≥ 1}+ #{a ∈M (N) | p(N)
a ≥ 1}

= #{a ∈ A(N)
d | p(N)

a ≥ 1}+M (N) −#{a ∈M (N) | p(N)
a = 0}

Since M (N) is a perfect matching and in every directed cycle driving and (matched)
turnaround arcs alternate, #M (N) = #A(N)

d , and we find

n(S(N)) ≥ 2#A(N)
d −#{a ∈ A(N)

d | p(N)
a = 0} −#{a ∈M (N) | p(N)

a = 0}

= 2#{a ∈ A(N)
d | p(N)

a ≥ 1}+ #{a ∈ A(N)
d | p(N)

a = 0}

−#{a ∈M (N) | p(N)
a = 0}.

(6)

The intersectionM (N)∩A[N ]
t is some matching inN [N ]. We will compare this with a maximum

cardinality matching M [N ] of the turnaround arcs in the N -th aperiodic expansion N [N ].
The matching M (N) ∩A[N ]

t contains all arcs a from M (N) with p(N)
a = 0, except those being

incident to a driving arc a with p(N)
a ≥ 1. Since any such driving arc can be incident to two

turnaround arcs in M (N), this means

#M [N ] ≥ #M (N) ∩A[N ]
t ≥ #{a ∈M (N) | p(N)

a = 0} − 2#{a ∈ A(N)
d | p(N)

a ≥ 1}. (7)

Therefore, using (6) and (7), and then Lemma 8,

n(S(N)) ≥ #{a ∈ A(N)
d | p(N)

a = 0} −#M [N ] = #A[N ]
d −#M [N ] = n(S[N ]

min). J
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The following lemma is an interesting fact about the interplay of minimum-weight perfect
matchings and maximum-weight matchings in the N -th periodic expansion. The proof makes
use of the structure of the 2-matching polytope of a bipartite graph.

I Lemma 11. Let M (N) be a minimum-weight perfect matching w.r.t. p(N) of the turnaround
arcs in the N -th periodic expansion N (N). Let q :=

⌈
log2

(∑
a∈At

pa + 1
)⌉
. If N ≥ 2q, then

M (N) maximizes #{a ∈M | p(N)
a = 0} among all matchings of turnaround arcs in N (N).

Proof. Let M (2) be any matching of the turnaround arcs in the second periodic expansion of
N , giving rise to an incidence vector x(2) ∈ {0, 1}A

(2)
t . Then the vector x ∈ {0, 1, 2}At with

xvw := x
(2)
(v,0),(w,0) + x

(2)
(v,0),(w,1) + x

(2)
(v,1),(w,0) + x

(2)
(v,1),(w,1), vw ∈ At,

is a 2-matching of the turnaround arcs in N . Since N is bipartite, the vertices of the
2-matching polytope correspond to matchings where each edge is taken twice [11, Theo-
rem 31.10]. In particular, a matching maximizing the number of arcs with p(2)

a = 0 in N (2) can
be found by considering instead a matching in N . By construction of N (N), any turnaround
arc a ∈ At produces max(2− pa, 0) copies in N (2) with offset 0. We are hence interested in
finding the maximum-weight matching in N w.r.t. the weight function a 7→ max(2− pa, 0).

Repeating this process, we can analogously find for any k ∈ N the matching maximizing
the number of turnaround arcs with p(2k)

a = 0 in N (2k) by computing a maximum-weight
matching in N w.r.t. the weights max(2k − pa, 0), a ∈ At. If 2k ≥

∑
a∈At

pa + 1, then
such a matching is automatically a perfect matching M (1) minimizing the periodic offsets
p. Performing the construction of the proof of Lemma 6, we obtain from M (1) a perfect
matching M (2k) minimizing p(2k). By Theorem 7, the weight of M (1) w.r.t. p equals the
weight of M (2k) w.r.t. p(2k).

Finally let N = 2q +r for some r ∈ N. Extending M (1) even further to a perfect matching
M (N) in N (N) yields in total

∑
a∈At

(2q + r − pa) =
∑
a∈At

(2q − pa) + r#Ad arcs with
p

(N)
a = 0. If M is a matching in N (N) maximizing µ := #{a ∈ M | p(N)

a = 0}, then M

matches at most 2r#Ad vertices that do not appear in N (2k). As M (2k) is maximum in
N (2k), in particular µ− r#Ad ≤

∑
a∈At

(2q − pa), so that M has at most as many p(N)
a = 0

arcs as M (N). J

We present now our main result, stating that rolling out and solving the minimal aperiodic
vehicle schedule problem has no advantage over working on the periodic network itself:

I Theorem 12. Let N be an event-activity network with periodic timetable π. Consider
(a) the number n(Smin) of vehicles of a minimal periodic vehicle schedule Smin on N w.r.t.

π,
(b) the number n(S(N)

min ) of vehicles of a minimal periodic vehicle schedule S(N)
min on the N -th

periodic expansion N (N) w.r.t. π(N), and
(c) the number n(S[N ]

min) of vehicles of a minimal aperiodic vehicle schedule S[N ]
min on the N -th

aperiodic expansion N [N ].
Then n(Smin) = n(S(N)

min) ≥ n(S[N ]
min). Moreover, n(Smin) = n(S(N)

min) = n(S[N ]
min) holds if

N ≥ 2q(2n(Smin) + 1), where q :=
⌈
log2

(∑
a∈At

pa + 1
)⌉
.

Proof. The equality n(Smin) = n(S(N)
min) has been established in Theorem 7. By Lemma 10,

n(S(N)
min) ≥ n(S[N ]

min). Thus it remains to show that n(S[N ]
min) ≥ n(Smin).
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Fix a minimal aperiodic schedule S[N ]
min. Let M be a minimum-weight perfect matching of

the turnaround arcs in N w.r.t. the periodic offset p. Assume for the moment that

pa ∈ {0, 1} for all a ∈ At, and
M maximizes the number of arcs a with pa = 0 among all matchings in (V,At).

(8)

By Lemma 8, the aperiodic schedule S[N ]
min uses at most n(S[N ]

min) ≤ n(Smin) pull-out arcs and
at most n(S[N ]

min) ≤ n(Smin) pull-in arcs. Suppose now N ≥ 2n(Smin) + 1. Then, by the
pidgeonhole principle, we find an i ∈ {0, . . . , N − 2} such that no vertex (v, i) is preceded by
a pull-out arc from s or followed by a pull-in arc to t.

Let M [N ] be the matching in (V [N ], A
[N ]
t ) corresponding to S[N ]

min. By Lemma 9,

n(S[N ]
min) ≥

∑
a∈Ad

pa + #{((v, i), (w, i+ 1)) ∈M [N ]}.

As there are neither pull-in nor pull-out arcs, all #Ad arrival vertices of the form (v, i) have
to be matched by M [N ]. Moreover, each maching partner (w, j) of (v, i) has either j = i or
j = i+ 1 due to the assumption pa ∈ {0, 1} in (8). Thus we can write

n(S[N ]
min) ≥

∑
a∈Ad

pa + #Ad − {((v, i), (w, i)) ∈M [N ]}.

The set {((v, i), (w, i)) ∈ M [N ]} yields naturally a matching in the unexpanded periodic
network N using only turnaround arcs a ∈ At with pa = 0. With #M = #Ad, the
assumptions (8) and Theorem 4,

n(S[N ]
min) ≥

∑
a∈Ad

pa + #Ad −#{a ∈M | pa = 0} =
∑
a∈Ad

pa +
∑
a∈M

pa = n(Smin).

Note that (8) might not be satisfied immediately. However, N can be replaced by its
2q-th periodic expansion N (2q), where q :=

⌈
log2

(∑
a∈At

pa + 1
)⌉
: Then 2q ≥ pa for each

a ∈ At, so that a minimum-weight perfect matching M (2q) constructed as in Lemma 6 uses
only arcs a with p(2q)

a ∈ {0, 1}. In particular, we can delete all arcs from N (2q) with p(2q)
a ≥ 2,

and still obtain the same perfect matching. Moreover, Lemma 11 now certifies the second
assumption. In particular, for N ≥ 2q(2n(Smin) + 1), we finally obtain

n(S[N ]
min) ≥ n(S(2q)

min ) = n(Smin). J

6 Conclusion

To summarize, given that a public transportation network is to be operated with a purely
periodic timetable, in order to compute the number of vehicles that are required to operate
it, there is no need to expand the periodic network over time and solve a standard network
flow model for vehicle scheduling. Rather, our results justify to keep the compact periodic
structure and compute perfect matchings, where the graph is even likely to decompose and
make the actual computation even easier. Moreover, this insight justifies that minimizing
vehicle waiting time as early as in the step of optimizing the timetable itself, indeed points
the timetable solution into the direction of a favorable efficient use of vehicles – right as it
has already been common practice in several case studies.

ATMOS 2018
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