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Abstract
We consider the problem of frequency optimization in transit systems, whose objective is to
determine the time interval between subsequent buses for a set of public transportation lines. We
extend an existing single level model by adding a constraint on bus capacities, while maintaining
user choice on routes by means of an assignment sub-model. The resulting formulation is bilevel,
and is transformed into a mixed integer linear programming formulation (MILP) that can be
solved to optimality for small-sized problem instances, using standard MILP techniques. We
study different variants of the same formulation to better understand the bilevel nature of the
model and its application to real settings.
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1 Introduction

There are different stages for the design of a public transportation system based on buses.
The literature identifies fives stages [4] that are usually performed sequentially in real
systems: route network design, frequency setting, timetable design, fleet assignment and
crew assignment. The decisions taken at each stage influence the decisions that can be
taken at later stages, and they are taken considering different planning horizons, depending
on whether the context of the planning is strategic (long term), tactical (medium term)
or operational (short term). The frequency setting decisions are usually part of a tactical
planning [10], although at least an initial frequency setting is necessary to evaluate the
decisions taken during route network design, which happens on a strategic basis.

The design of a public transportation system needs to consider monetary costs, that
range from fixed costs due to the construction of the infrastructure, to variable costs due to
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the operation of the services. It must also consider the interest of the users, e.g., in providing
reasonable travel times, waiting times, and number of transfers. The frequency setting affects
directly both concerns, impacting the level of service provided to the users (waiting time,
capacity of the lines) and the costs that planners need to incur to run the system (the fleet
size is determined by the required frequency of the lines).

The user of a public transportation system usually behaves in an egoistic way, that is, in
such a manner as to minimize its individual total travel time (on-board time plus waiting
time). Therefore, in order to measure the performance of a transportation system from the
viewpoint of the users, models should take into consideration how the users behave when
faced with the choice of a specific line from a set of candidate bus lines that can take them to
their destinations. Such is the responsability of an assignment sub-model, that by applying a
set of hypotheses on how the users behave selects the appropriate lines in order to satisfy
travel demands. The assignment model is in itself an optimization problem, usually having a
complex formulation and solution method, specially when the influence of the bus capacity
is considered in the modelling of the user behavior. Therefore, the complexity of the overall
frequency optimization model is strongly determined by the complexity of the underlying
assignment sub-model.

In several real settings, public transportation systems run over capacity, meaning that
the nominal frequencies of the transit lines are not respected due to lack of capacity. In this
context, the capacity is determined by the capacity of the vehicles and the frequencies of
the lines. To model these situations, capacity constraints should be taken into consideration
when representing the passenger behavior. Even though the problem of transit assignment
considering capacities has been properly addressed by the existing literature [15], the problem
of transit frequency optimization considering capacities has been more scarcely studied.

The consideration of the bus capacity constraint alongside an assignment sub-model
changes the nature of frequency optimization, turning a single level (uncapacitated) formula-
tion into a bilevel one [2]. In bilevel problems there is a constraint that establishes that one
or several decision variables must be part of the optimal solution of yet another optimization
problem, known as the lower level problem [2] [6]. Exactly two decision makers exist, and
the objectives of them do not necessarily coincide. Furthermore, the individual decision each
one can take influences the decisions of the other.

The bilevel nature of the frequency optimization problem stems from the fact that the
direct addition of bus capacities to the model, involving variables that affect both the planner
and the users of the system, would disrupt the underlying assignment sub-model by forcing
users to take sub-optimal paths to reach their destination.

The remainder of the article is organized as follows. In section 2 we present a review on
related literature and the contributions of this work. The mathematical model and proposed
formulation is described in detail in section 3, while in section 4 we present computational
experiments using a simple test case on alternative formulations. We conclude the work and
refer to future research directions in section 5.

2 Related literature and statement of contribution

In this section we review related relevant literature on frequency optimization in public
transportation systems, with a special focus in works that have incorporated either the
behavior of the users in an explicit manner (i.e., by means of an assignment sub-model) or
bus capacities.

In [8] a nonlinear bilevel formulation for frequency optimization is proposed. It incor-
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porates an explicit assignment model [24] in the lower level, while the upper level problem
represents the interest and constraints of the planner, who wants to provide a minimal overall
travel time for the users of the system while at the same time diminish the monetary costs
by constraining the fleet size. The authors propose a resolution method based on a gradient
descent, exploiting specific properties of the problem. The model is applied to several case
studies of small to medium sizes.

A bilevel model is proposed in [23], where the upper level seeks to improve an overall
cost function and the lower-level consists of the capacity constrained assignment problem
formulated in [9]. Tabu Search [17] is used as the heuristic search.

In [20] a MILP formulation is proposed that models user behavior by means of the optimal
strategies [24] assignment model. The objective is to minimize the overall travel time of
users (on-board travel time plus waiting time) while the operational cost is constrained with
an upper limit on the allowed fleet size. The model is solved exactly by using a commercial
solver on small instances; for larger instances, a metaheuristic based on Tabu Search is used.
The metaheuristic approach is tested using real case studies.

More recently, [18] propose two different integer programming formulations for the problem
of designing lines in a public transport system. As part of the line design, frequencies are
considered as decision variables to incorporate bus capacities into the model, however, the
waiting time of the users is not modeled. Exact solution methods are proposed, and a genetic
algorithm is used in order to solve large-scale instances.

The contributions of our work are:

We consider the passenger behavior as well as the bus capacity and the waiting time
of the users, into a single and explicit mathematical programming formulation for the
transit frequency optimization problem.
We propose a bilevel formulation that is converted to a mixed integer linear programming
(MILP) formulation suitable of being solved exactly by using commercial MILP solvers
for small-sized instances of the problem.
By applying the exact approach developed to small-sized cases, we are able to study the
sensitivity of the solutions with respect to certain aspects of the problem, and therefore,
to achieve a better understanding of its nature.

3 Mathematical model

We base our formulation on the one proposed in [20]. In order to model user behavior, it
incorporates an explicit assignment model [24].

We propose an extension of the model by adding the bus capacity constraint. This leads
us to consider a bilevel formulation that is able to capture the impact that constraints such
as the bus capacity, have on the nature of the problem.

3.1 Basic concepts and notation
Before presenting the proposed mathematical programming formulation, we need to provide
some concepts as well as a detailed explanation of the used representation.

We make use of a network represented as a directed graph G = (N,A) where nodes acting
as bus stops NP and street endpoints NS are included in the set N . The movement of the
buses along the street is represented by travel arcs (AT ) that connect nodes of NS . A fixed
nonnegative travel time ca is associated with each travel arc. Boarding (AB) and alighting
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7:4 A bilevel approach to transit frequency optimization

(AL) arcs are also contained in the set A, connecting nodes from NP to NS and from NS to
NP , respectively.

We assume that the demand is generated at the bus stops. The demand is represented
using an origin-destination matrix, where the set of OD pairs K is such that for a given pair
k ∈ K, there are Ok, Dk ∈ NP origin and destination nodes, respectively, and a nonnegative
value δk that represents the amount of people (per time unit in a given time horizon) that
have a travel requirement on the pair k.

Lines are defined over the set of travel arcs AT . Each line l ∈ L is composed of a sequence
of adjacent travel arcs. The round-trip time for a given line is defined as

∑
a∈l ca. Lines

are either circular, or composed by the concatenation of forward and backward travel arc
sequences. Figure 1 illustrates the graph model.

Figure 1 Graph model (extracted from [20])

3.2 Assignment model
An assignment model determines user behavior, that is, the way in which users satisfy
their travel needs using the existing public transportation lines. Users of the system must
choose a line from a set of possible candidate lines that can bring them to their intended
destination. Since in order to measure the performance of the system, user satisfaction is of
great importance, the assignment model is a critical component of any model of frequency
optimization.

The factors that a user considers to make such a choice (i.e., minimize travel time, number
of transfers) and the amount of detail and information they have at their disposal (i.e., if
the infrastructure provides real time information) determines whether an assignment model
is appropriate for the real scenario under study. The way the users behave have a direct
influence on the calculation of measures such as the waiting time and occupancy of the buses
that end users experience.

The assignment model used in this work is the one proposed in [24], called optimal
strategies. A strategy is a set of rules that when applied, allow users to reach their destinations.
In particular, the model assumes that a given user selects the strategy that minimizes his or
her total travel time, including the waiting time at the bus stops. In order to achieve this, it
is assumed that users have knowledge of the on-board travel times and frequencies of all the
lines of the system. That information is then used to refine a set of attractive lines that can
be used to reach the desired destination from the origin. At the bus stop, a given user will
take the first bus belonging to the attractive set of lines that passes by that stop. Since the
model is probabilistic, an optimal strategy is defined as a strategy that minimizes the total
expected travel time.
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The probabilistic nature of the model is evident when considering how the waiting
time of a passenger waiting on a stop is calculated, for a set of lines R = {r1, . . . , rm} with
corresponding frequencies F = {f1, . . . , fm}. As commonly accepted in the literature [10], the
waiting time can then be modeled by a random variable of mean value E(tw) = β/

∑
ri∈R fi,

where β is a parameter which depends on assumptions concerning service regularity. Since
the model assumes that passengers take the first bus that arrives at the stop, the probability
of using the route ri, known as the frequency share rule, is Pi = fi/

∑
rj∈R fj .

For a single OD pair, the assignment model can be formulated as follows:

min
v,w

∑
a∈A

cava +
∑

n∈NP

wn (1)

s.t.
∑

a∈A+
n

va −
∑

a∈A−
n

va = bn ∀ n ∈ N, (2)

va ≤ fawn ∀ n ∈ NP , a ∈ A+
n , (3)

va ≥ 0 ∀ a ∈ A (4)

where wn is the waiting time multiplied by the amount of demand at node n ∈ NP , A−n are
incoming arcs to node n, va is the amount of demand flowing through arc a ∈ A, fa is the
frequency of the line corresponding to the boarding arc a, and bn is a value equal to the
demand requirement at that node, that is, δk if n = Ok, −δk if n = Dk, and 0 otherwise.

The objective function (1) states the intention of the users of the system, that is, to
minimize their total travel time (sum of on-board travel time and the waiting time at the
stops). The flow conservation constraint (2) guarantees that all users are able to reach their
destinations. Constraint (3) splits the demand among the different lines that belong to the
attractive set, and prohibits flow passing through arc a if the arc is not part of the optimal
strategy. If va > 0 the arc must belong to some optimal strategy and the constraint verifies
with equality, restoring the frequency share rule expression.

This is a linear formulation that closely resembles a shortest path problem. The particu-
larities of the formulation consist of a new term in the objective function, representing the
waiting time at nodes, and constraint (3) that represents what is known as the split rule,
where demand is splitted among the attractive lines leading to the destination and passing by
the given stop. Due to the latter constraint, the solution of the assignment problem consists
of a hyperpath [22] representing different trajectories from origin to destination, instead of a
single path on the graph as it is the case when solving the shortest path problem.

The model presented above can be easily extended to consider demand generated (both
produced and attracted) in places other than the bus stop. This can be done by considering
centroid nodes (representing zones of the study region) which are connected to stop nodes
through walking arcs.

3.3 Frequency optimization model

The frequency optimization model proposed in [20] is based on the one proposed in [8],
which has a nonlinear bilevel formulation. Formulation (5 - 12) is a linear transformation of
that original model, where authors introduce a discretization of the domain of frequencies
Θ = {θ1 . . . θm} where each element θi is a nonnegative value representing a possible value
for the frequency of any line.
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7:6 A bilevel approach to transit frequency optimization

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (5)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (6)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (7)

∑
a∈A+

n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (8)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (9)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (10)
vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (11)
ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ. (12)

In doing this, the authors define a new structure of the graph G, where for each line
passing by a given bus stop node, there exists as many boarding arcs to that node as possible
values of Θ. Figure 2 illustrates the changes introduced in the graph model by using a
discretized domain of frequencies.

Figure 2 Discretized domain of frequencies (extracted from [20])

The model is mixed integer, due to the introduction of the binary variable ylf , which takes
value 1 if frequency θf is associated with the line l. To keep the planner costs bounded, the
parameter B is introduced, which represents an upper limit on the fleet size. To indicate the
line frequencies some notation is introduced: f(a) specifies the index in Θ of the frequency
associated with the arc a, while l(a) specifies the line that corresponds to that arc. Index k
is used to indicate OD pairs.

In formulation (5 - 12) the objective function is that of the users, which intend to minimize
their total travel times, while taking into account the interest of the planners that seek to
minimize operational costs (6). The assignment model is included in constraints (8 - 10), now
expanded to consider each demand pair k. Constraint (7) enforces the fact that each line
must have exactly one frequency associated, while constraint (11) prohibits flow on nodes
vak when the frequency associated with that boarding arc is not active (yl(a)f(a) = 0) and is
redundant otherwise.

This results in a mixed integer linear formulation, where the main source of complexity
is the existence of binary variables, and the fact that the discretization of the domain of
frequencies increases the size of the underlying graph model due of the addition of new
boarding arcs, one per possible frequency value.
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3.4 Adding the bus capacity constraint
The assignment sub-model embedded in formulation (5 - 12) assumes that there is sufficient
capacity to carry all the passengers that desire to use any line. Furthermore, there is no
additional constraint in the formulation that considers the capacity of the lines, which
is unrealistic in systems that exhibit high affluence of passengers. Upon introducing a
new parameter ω that represents the capacity of a bus, and considering that line capacity
(measured in passengers per time unit) is defined as the product of its frequency by the
capacity of the bus, we can impose feasible line flows by adding the following constraint:

∑
k∈K

vak ≤
∑

f∈1..m

yl(a)fθfω ∀a ∈ AT (13)

However, this could result in solutions where the flow of a given OD pair is distributed
among:

A shortest hyperpath comprising lines whose capacity is saturated, i.e., constraint (13) is
active for their corresponding travel arcs. This represents the optimal strategy.
Other alternative hyperpaths, whose cost according to expression (1) is higher than the
cost of the shortest one. This represents (sub-optimal) strategies that the users choose a
priori, knowing the existence of a shortest hyperpath which is saturated.

This leads us to the concepts of line planning with route assignment (LPRA) and line
planning with route choice (LPRC), first defined in [18]. LPRA models are widespread in the
literature, and assume that passengers can be steered by the public transportation planner,
an assumption that usually results in simpler but unrealistic models. The utilization of
assignment models such as the one used in this work imply a LPRC approach, where each
user chooses the route that best fits his or her expectations. Adding constraint (13) directly
into the formulation would violate the LPRC approach, as users would need to consider a
priori lines that must conform with the new constraint (planners concern) rather than choose
the lines in an egoistic way. In a general sense, the addition of any constraint that may
impact the variables that model user behavior, and that are not required by the hypothesis of
the considered assignment model, would defeat the purpose of the model, since users would
behave in a way such as to pursue the optimization of some global optimum that benefits
the formulation in place but not necessarily their own interests.

There are at least two ways of modeling the capacity of the buses in the frequency
optimization problem while honouring the expected user behavior:

Assuming that the planner ensures sufficient capacity on the lines that the users want to
use. This is done by setting appropriate values of frequencies on the corresponding lines.
Modeling a congested system, through an assignment sub-model which represents the
user behavior under a situation of lack of line capacity. In this case, it is assumed that
some users are forced to wait for the next bus of the line, with available capacity, or wait
for a different line.

The second one entails to consider an equilibrium assignment sub-model [5] [9] embedded
into the frequency optimization model, which is considerably more complex than the first
approach [13]. Furthermore, to the best of our knowledge, there is not a formal criterion to
decide between both approaches from the modeling point of view. In practice, constraints
related to capacity of infrastructure, budget and policy come into play to determine whether
it is possible to operate a not congested system. In this work we follow the first approach.
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7:8 A bilevel approach to transit frequency optimization

3.4.1 Bilevel mathematical programming formulation
If constraint (13) is added to formulation (5 - 12) we would be considering decisions taken
by different actors in the same model. Variables y represent planner decisions in assigning
frequencies to lines, while variables v and w represent decisions of the users, that select which
lines to use to reach their destinations. Bilevel mathematical programs [2] [6] [12] are used
to model scenarios with similar characteristics.

In order to incorporate the bus capacity constraint in our model, we propose the following
bilevel formulation:

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (14)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (15)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (16)

∑
k∈K

vak ≤
∑
f∈Θ

yl(a)fθfω ∀ a ∈ AT , (17)

ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ, (18)

min
v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (19)

s.t.
∑

a∈A+
n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (20)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (21)

vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (22)
vak ≥ 0 ∀ a ∈ A, k ∈ K. (23)

where the upper level (14)-(18) represents decisions of the planners while the lower level (19 -
23) represents decisions of the users, that is, the assignment sub-model with the input of
fixed frequencies θf(a). The objective function of both levels is the same, considering only
the objective of the users, which is to minimize the overall travel time. Arguably, the fleet
size constraint (15) could be modeled as another objective to minimize at the upper level,
which would lead us to consider a multi-objective bilevel formulation, probably increasing
the complexity of the formulation [16].

The planners can ensure sufficient capacity on the lines that the users want to use by
adjusting the frequencies according to constraint (17). In that manner, users are assummed
to perceive unlimited capacities on the lines they might take.

Formulation (14 - 23) is classified as Discrete Continuous Linear Bilevel (DCLB) [2] since
the upper level is linear with discrete variables while the lower level is linear with continuous
variables. Therefore, it can be reformulated into a MILP problem and in theory it could be
solved to optimality. Some commonly used reformulation strategies for doing this are:

Using the Karush-Kuhn-Tucker (KKT) conditions to substitute the lower level problem
and therefore removing the distinction among the different levels. Due to the comple-
mentarity term, that is not linear, the resulting reformulation would be a standard single
level nonlinear mathematical program that is suitable to be solved by some of the existing
nonlinear algorithms. Usually, the reformulation is combined with a linearization of the
complementary slackness term using the big-M method [12]. This approach has been
described and used in [2] [12].
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Primal-Dual reformulation. In this case the lower level problem is replaced by using its
dual constraints, primal (original) constraints, and the strong duality theorem equality
(equality between the lower and upper level objective functions), since the KKT conditions
are equivalent to the later conditions when the lower level problem is linear. This approach
has been used in [1] [3] [14].

In the present work formulation (14 - 23) was transformed into a single level formulation
using the first approach, that is, by replacing the lower level problem by the optimality
conditions given by its constraints, the constraints of its dual and the complementary slackness
constraints, which were linearized using the big-M method. In that way, by replacing the
lower level with its optimality conditions, variables which represent decisions of the users
(v and w) are restricted to take values which solve problem (19 - 23). Therefore, the whole
model will adjust the frequency values (variable y) so as to respect the constraints which are
directly included in the upper level (among them, bus capacity) as well as the optimality
conditions which represent the (uncapacitated) lower level problem.

After applying the KKT conditions, the resulting MILP model, equivalent to (14 - 23),
is (24 - 51), where (33 - 36) correspond to the constraints of the dual of problem (19 - 23),
πnk, νak, and µak are the dual variables corresponding to constraints (20), (21), and (22),
respectively, s1

ak and s2
ak are slack variables associated with inequality constraints (21) and

(22), respectively, and t1ak, t2ak and t3nk are slack variables associated with the inequality
constraints (33), (34) and (35), respectively. The complementary slackness conditions are
linearized by applying the big-M method (37 - 46), obtaining in this manner a MILP single
level formulation.

4 Experiments for a small-sized example

In order to illustrate the application of the bilevel model explained in section 3, we show in
Figure 3 the small-sized case considered.

Figure 3 Illustrative example

The numbers close to the arcs indicate their corresponding travel times. There are
two OD pairs, such that O1 = 1, O2 = 2, D1 = D2 = 3 and δ1 = δ2 = 5. We consider
values of fleet size B = 10, bus capacity ω = 1.0 and the set of possible frequencies
Θ = {1.0, 2.5, 5.0, 7.0, 9.0}. The lines defined for this case are l1 = {(1, 2), (2, 3)} and
l2 = {(1, 3)}, both having symmetrical forward and backward itineraries.

Table 1 shows the results of applying three different variants of formulation (24 - 51) to
the example of Figure 3, where τ (calculated in (24)) is the total travel time of the optimal
solution and β (calculated in (25)) its corresponding fleet size; it also shows the line capacity
(as defined in expression (13)) and the critical flow of each line (defined as the flow of the arc
va with maximum flow on the line). Even though the model has a large number of variables,
due to the small size of the instance, the execution time is negligible.

ATMOS 2018



7:10 A bilevel approach to transit frequency optimization

Table 1 Impact of adding the bus capacity constraint

Model cap. l1 critical flow l1 cap. l2 critical flow l2 τ β

uncapacitated 9.0 9/10δ1 + δ2 = 9.5 1.0 1/10δ1 = 0.5 4.8 ≤ 10
cap. single-level 9.0 8/10δ1 + δ2 = 9.0 1.0 2/10δ1 = 1.0 5.3 ≤ 10

cap. bilevel 9.0 9/11.5δ1 + δ2 = 8.9 2.5 2.5/11.5δ2 = 1.1 ≤ 4.8 11.5

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (24)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (25)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (26)

∑
k∈K

vak ≤
∑
f∈Θ

yl(a)fθfω ∀ a ∈ AT , (27)

∑
a∈A+

n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (28)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (29)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (30)
vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (31)
ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ, (32)
πik − πjk ≤ ca ∀ a = (i, j) ∈ A−AB , k ∈ K, (33)
πik − πjk − µak − νak ≤ ca ∀ a = (i, j) ∈ AB , k ∈ K, (34)∑
a∈AB+

n

θf(a)νak ≤ 1 ∀ n ∈ N, k ∈ K, (35)

µak, νak ≥ 0 ∀ a ∈ AB , k ∈ K, (36)
θf(a)wik − vak ≤ s1

akM ∀ a = (i, j) ∈ AB , k ∈ K, (37)
νak ≤ (1− s1

ak)M ∀ a ∈ AB , k ∈ K, (38)
δkyl(a)f(a) − vak ≤ s2

akM ∀ a ∈ AB , k ∈ K, (39)
µak ≤ (1− s2

ak)M ∀ a ∈ AB , k ∈ K, (40)
ca − πik + πjk ≤ t1akM ∀ a = (i, j) ∈ A−AB , k ∈ K, (41)
vak ≤ (1− t1ak)M ∀ a ∈ A−AB , k ∈ K, (42)
ca − πik + πjk + µak + νak ≤ t2akM ∀ a = (i, j) ∈ AB , k ∈ K, (43)
vak ≤ (1− t2ak)M ∀ a ∈ AB , k ∈ K, (44)

1−
∑

a∈AB+
n

θf(a)νak ≤ t3nkM ∀ n ∈ N, k ∈ K, (45)

wnk ≤ (1− t3nk)M ∀ n ∈ N, k ∈ K, (46)
s1

ak ∈ {0, 1} ∀ a ∈ A, k ∈ K, (47)
s2

ak ∈ {0, 1} ∀ a ∈ AB , k ∈ K, (48)
t1ak ∈ {0, 1} ∀ a ∈ A−AB , k ∈ K, (49)
t2ak ∈ {0, 1} ∀ a ∈ AB , k ∈ K, (50)
t3nk ∈ {0, 1} ∀ n ∈ N, k ∈ K (51)
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4.1 Experiment 1: comparision of uncapacitated and single level
capacitated models

The first line of Table 1 shows the results of applying the uncapacitated model (5 - 12).
When capacities are not considered, the entire flow of OD pair 2 uses l1, while the flow of
OD pair 1 is distributed between both lines (4.5 uses l1 and 0.5 uses l2) due to the flow
splitting constraint (9).

When we consider bus capacities in the original uncapacitated model (second line of the
table), adding the constraint directly, we obtain the same setting of frequencies but with a
different assignment of flows. In this case, 1.0 units of the demand corresponding to OD
pair 1 uses l2. This is because l1 has capacity to accommodate only up to 9.0 units of flow.
The 0.5 units of flow corresponding to OD pair 1, which were moved from l1 to l2 represent
a set of users who are forced to use a sub-optimal hyperpath, knowing the existence of a
better one, that is, they behave in an unrealistic way. Moreover, we note that the model is
not able to represent this situation consistently, since it can not represent different waiting
times for passengers corresponding to the same OD pair at the same stop (variables wnk).

The example shows through a numerical application, the consequences of solving the
capacitated problem in a straightforward (not realistic) way. When we apply the bilevel
model (24 - 51) to the same case, we obtain no feasible solution. This is due to the fleet
size constraint, that does not allow for an increase of frequencies in order to accommodate
the demand on the lines that the users want to use; moreover, the model is not able to
change the frequencies in such a way as to redistribute the flows in order to respect the line
capacities. That difficulty was already noted in [7]. In order to overcome this difficulty, we
identify two approaches in the literature:

Soften the bus capacity constraint, by moving it as a term of the objective function [7].
Allow the model to increase the fleet size, by including its respective constraint in the
objective function [19].

By adopting the first approach, the solutions obtained may violate the bus capacity
constraint; the higher the violation, the less valid is the corresponding assignment of flows,
which is done assuming sufficient capacity. On the other hand, the second approach assumes
that the fleet size can be increased. This may be a reasonable assumption in the context of
strategic planning, where the model can be used to estimate the investment required to offer
a given level of service. In this case, by adding a new objective function the resulting model
becomes multi-objective, which requires a special treatment depending on how this nature
is represented: for example, by setting appropriate weights or calculating non-dominated
solutions [21].

4.2 Experiment 2: calculation of required fleet size
Considering the discussion above, another possible application of the bilevel model to the
capacitated case would be to state the fleet size minimization as upper level objective, subject
to a constraint of maximum travel time; that is, swapping objective function (14) and
constraint (15).

The results of applying this model to the small instance can be found in the third line
of Table 1, where we state a maximum travel time equal to 4.8 (the optimal value of the
uncapacitated model). The optimal value in this case (which corresponds to the fleet size), is
equal to 11.5. The intepretation of the result is that in order to obtain a setting of frequencies
which respects the bus capacity constraint while at the same time producing a total travel
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time which is no worse than the one corresponding to the uncapacitated case, the fleet size
should be increased in 15%.

5 Conclusions and further research

In the present work we propose a new bilevel formulation for transit frequency optimization,
based on the model presented in [20]. The proposed model considers individual passenger
route choice, using an assignment model [24], as well as considering the waiting time of the
users and the bus capacity when measuring the performance of the system. We derived a
mixed integer linear programming (MILP) formulation which is equivalent to the bilevel one,
that is susceptible of being solved by common solvers using standard MILP techniques, for
small-sized problem instances.

We have also explored the bilevel nature of the problem by applying different formulations
to the same example instance. The results obtained suggest that a true bilevel approach
should be considered whenever bus capacities are contemplated, and that uncapacitated
models are able to produce solutions that are not appropriate in contexts where the transit
system is operating over its capacity.

We note that all variants of the bilevel model discussed here maintain the DCLB structure.
This enables to apply exact solution methods. However, the existing (general purpose)
solution methods for this kind of bilevel problems [2] [3] [12] do not necessarily handle models
with many variables and constraints, as it is the case of frequency optimization problems.
Therefore, further research is needed in order to devise tailored solution methods for the
specific problem. An example of such an approach can be found in [18]. Metaheuristic
techniques may also aid in finding good solutions to solve the transit frequency optimization
problem. The Tabu Search [17] based metaheuristic presented in [20] to solve a single level
instance of the problem might also be extended to cope with a bilevel program. There are a
growing number of metaheuristic approaches that deal with bilevel problems. A good survey
can be found in [11].

It is also desirable to apply the proposed formulation to instances corresponding to real
cities of medium size, in order to study the scalability of the method and the improvements
obtained when compared to the current solutions of real transportation systems. The addition
of other constraints, such as enforcing a maximum waiting time for users of the transit system
may further help achieving solutions of good performance in real world contexts.

Regarding capacitated models, a formal criterion for switching between uncongested and
congested frequency optimization models would be desirable to establish.
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